[latex]1) 2cos^2alpha-1= 1-2sin^2alpha\ 2(1-sin^2alpha)-1=2-2sin^2alpha-1=1-2sin^2alpha\ [/latex] [latex]2) sin^2(1+cos^2alpha)=\(1-cos^2alpha)(1+cos^2alpha)=1-cos^4alpha[/latex] [latex]3) (2sinalpha+cosalpha)^2+(sinalpha-2cosalpha)^2=\ =4sin^2alpha+4sinalpha cosalpha+cos^2alpha+sin^2alpha-4sinalpha cosalpha+4cos^2alpha=\ =4sin^2alpha+4cos^2alpha+cos^2alpha+sin^2alpha=\ =4(sin^2alpha+cos^2alpha)+1=4+1=5[/latex] Wykorzystano wzóry: na jedynkę trygonometryczną: [latex]sin^2alpha+cos^2alpha=1\[/latex] wzór skróconego mnożenia: [latex]a^2-b^2=(a-b)(a+b)[/latex]
Rozwiąż równanie: 1 - cos(2x) + sin(2x) = 2cos(x - 45°) Próbowałem użyć wzorów dla sin(α+β) i cos(α+β) ale dochodziłem do postaci: 2sin^2(x)+2sin(x)cos(x)-√2*cos(x)+√2*sin(x)=0 i dalej nie wiedziałem jak zrobić. Nie wiem czy gdzieś popełniłem błąd cz
Rozwiąż równanie: 1 - cos(2x) + sin(2x) = 2cos(x - 45°) Próbowałem użyć wzorów dla sin(α+β) i cos(α+β) ale dochodziłem do postaci: 2sin^2(x)+2sin(x)cos(x)-√2*cos(x)+√2*sin(x)=0 i dalej nie wiedziałem jak zrobić. Nie wiem czy...
Wykaż, że dla kata ostrego tożsamością jest równość: a) (tg - 1)(ctg + 1)=tg - ctg b) tg * ctg + 1= 2(sin(kwadrat) + cos(kwadrat)) c) (1+ cos)(1-cos) = sin(kwadrat) d) 1- 2cos(kwadrat) = 2sin(kwadrat) - 1
Wykaż, że dla kata ostrego tożsamością jest równość: a) (tg - 1)(ctg + 1)=tg - ctg b) tg * ctg + 1= 2(sin(kwadrat) + cos(kwadrat)) c) (1+ cos)(1-cos) = sin(kwadrat) d) 1- 2cos(kwadrat) = 2sin(kwadrat) - 1...
Rozwiąż równania: 2sin^3 x - 3sinx cos x =0 sin x +sin 2x = sin 3x 2sin^2 3x+cos3x - 2 =0 2cos x +3 =4cos x/2 {sinx} = {cos x} {}- wartość bezwzględna cos^4 x - sin ^4 x =sin4x sin x + cos x =1 Z góry dziękuję
Rozwiąż równania: 2sin^3 x - 3sinx cos x =0 sin x +sin 2x = sin 3x 2sin^2 3x+cos3x - 2 =0 2cos x +3 =4cos x/2 {sinx} = {cos x} {}- wartość bezwzględna cos^4 x - sin ^4 x =sin4x sin x + cos x =1 Z góry dziękuję...
a-alfa ^=kwadrat 1)sin^a-cos^a=1-2cos^a 2) 1-2cos^a=2sin^a-1 3) (cos a+sin a)^+(cos a-sin a)^=2 4)(cos a+sin a)^-(cos a-sin a)^=4sin a cos a 5) 1+tg ain a+cos a/cos a 6) (tg a+ctg a)^=1/sin^acos^a
a-alfa ^=kwadrat 1)sin^a-cos^a=1-2cos^a 2) 1-2cos^a=2sin^a-1 3) (cos a+sin a)^+(cos a-sin a)^=2 4)(cos a+sin a)^-(cos a-sin a)^=4sin a cos a 5) 1+tg ain a+cos a/cos a 6) (tg a+ctg a)^=1/sin^acos^a...
Oblicz: a) sin^2 75° + sin^2 15° - 2sin 30° b) (cos 52° - cos38)^2 + 2sin 38° * sin 52° + 2cos 60° Prosze o szybkie rozwiązanie :)
Oblicz: a) sin^2 75° + sin^2 15° - 2sin 30° b) (cos 52° - cos38)^2 + 2sin 38° * sin 52° + 2cos 60° Prosze o szybkie rozwiązanie :) ...
Oblicz stosując wzory redukcyjne: a) tg 43° · tg 44° · tg 45° · tg 46°· tg 47° b) ctg 25° · ctg 35° · ctg 45° · ctg 55° · ctg 65° c) sin²75° + sin²15° - 2sin 30° d) (cos 52° - cos 38°)² + 2sin 38° · sin 52° + 2cos 60°
Oblicz stosując wzory redukcyjne: a) tg 43° · tg 44° · tg 45° · tg 46°· tg 47° b) ctg 25° · ctg 35° · ctg 45° · ctg 55° · ctg 65° c) sin²75° + sin²15° - 2sin 30° d) (cos 52° - cos 38°)² + 2sin 38° · sin 52° + 2cos 6...