Oko i barwy światła
Prawidłowe oko człowieka zbudowane jest w ten sposób, ze na siatkówce otrzymywany jest ostry obraz obserwowanego przedmiotu. Jest to możliwe dzięki takiej budowie oka, która zapewnia skupianie wszystkich promieni świetlnych wpadających do oka w jego ognisku.
Gałka oczna znajduje się w przedniej części oczodołu i porusza się dzięki ruchom mięsni ocznych w zagłębieniu utworzonym przez tkankę tłuszczowa oczodołu i liczne powięzie. Wychodzący z niej nerw wzrokowy przechodzi przez otwór kostny do wnętrza czaszki i dalej do mózgu.
Oko ma w przybliżeniu kształt kuli o średnicy 24 mm, wypełnionej w większości bezpostaciowa substancja (ciałkiem szklistym), znajdującej się pod ciśnieniem pozwalającym na utrzymanie jego kształtu.
Światło wpadające do oka biegnie przez rogówkę, komorę przednią oka, soczewkę i ciało szkliste, by zakończyć swą podróż na siatkówce wywołując wrażenie wzrokowe przekazywane do mózgu za pośrednictwem nerwów łączących się w nerw wzrokowy. Rogówka, wraz z cieczą wodnistą, soczewka i ciałem szklistym, stanowią układ skupiający promienie świetlne tak, by na siatkówce pojawiał się ostry obraz obserwowanego przedmiotu i dawał jak najostrzejsze wrażenie wzrokowe. Dlatego tez soczewka ma możliwość zmiany swojego kształtu, a co za tym idzie mocy optycznej. Pozwala to na ogniskowanie na siatkówce przedmiotów znajdujących się w różnych odległościach od oka. Zdolność tę nazywamy akomodacją. Ostre widzenie uzyskiwane jest wtedy, gdy ognisko obrazowe pokrywa się z siatkówką. W przypadku, gdy oko nie jest w stanie zogniskować światła dokładnie na siatkówce mówimy o wadach wzroku
Oko odbiera tylko część promieniowania na padającego. Związane jest to z własnościami fizyko-chemicznymi rogówki, czopków i pręcików. Odbieramy zatem tylko światło, które mieści się w zakresie tzw. okna optycznego. Okno optyczne to przedział długości fali elektromagnetycznej (światła) od ok. 400nm (co odpowiada światłu o barwie fioletowej) do ok. 700nm (co odpowiada światłu o barwie czerwonej). Powyżej długości 700nm znajduje się niewidoczna dla człowieka podczerwień, a poniżej 400nm, również niewidoczny, ultrafiolet. Do fal elektromagnetycznych zaliczamy także niewidoczne dla człowieka promienie gamma, promienie X i inne
Obraz przedmiotu na siatkówce jest odwrócony "do góry nogami", co wynika z fizycznej budowy oka (soczewka odwraca obraz). W pierwszych dniach życia mózg człowieka uczy się widzieć prawidłowy obraz obracając go by w późniejszym życiu robić to automatycznie. Oznacza to, ze niemowłe widzi świat "postawiony na głowie" i dopiero po pewnym czasie zaczyna widzieć normalnie
Odbicie całkowite wewnętrzne, odbicie światła zachodzące na granicy dwóch ośrodków przezroczystych charakteryzujących się współczynnikami załamania n1 i n2, n1>n2. Zjawisko obserwuje się w ośrodku o większym współczynniku załamania. Polega ono na odbiciu światła zachodzącym bez strat energii, nie towarzyszy mu załamanie światła. Obserwuje się go, gdy kąt padania (tj. kat zawarty pomiędzy normalna do powierzchni a kierunkiem promienia światła) jest większy od tzw. kąta granicznego całkowitego odbicia wewnętrznego.
Zjawisko całkowitego wewnętrznego odbicia jest podstawa działania światłowodu, wykorzystywane jest w wielu przyrządach optycznych, m.in. w niektórych konstrukcjach pryzmatach całkowitego odbicia itp.
Światłowód, falowód służący do przesyłania promieniowania świetlnego. Pierwotnie miał postać metalowych rurek o wypolerowanych ściankach, służących do przesyłania promieniowania podczerwonego. Obecnie w formie włókien dielektrycznych - najczęściej szklanych, z otulina z tworzywa sztucznego, charakteryzującego się mniejszym współczynnikiem załamania światła niż wartość tego współczynnika dla szkła. Promień światła rozchodzi się w światłowodzie po drodze będącej łamana, tzn. ulegając kolejnym odbiciom (w przypadku światłowodu z włókien są to odbicia całkowite wewnętrzne).
Światłowody są niezwykle ważne także w telekomunikacji. Światło, mimo wielokrotnych odbić może pokonać wielkie odległości, nawet po bardzo krętych drogach, bez zmiany natężenia. Światłowody wypierają wiec grube, masywne i drogie przewody miedziane. Wszystko wskazuje na to, ze przyszłość telefonii i telekomunikacji, zwłaszcza jeżeli chodzi o transfer ogromnych ilości danych, należeć będzie do światłowodów. Dodatkowym atutem światłowodów jest też to, ze światło ze względu na bardzo mała długość fali (czyli duża częstotliwość - wyższa niż częstotliwość prądu elektrycznego) może być nośnikiem ogromnej ilości informacji. Ponadto w przeciwieństwie do prądu elektrycznego światło nie jest wrażliwe na temperature czy zmiany pola magnetycznego. Dzięki temu sygnały świetlne nie ulegają zakłóceniom, nie można ich tez podsłuchiwać