[latex]log _{a}x=2 Rightarrow a^2=x Rightarrow a=x^{frac{1}{2}}[/latex] [latex]log _{b} x=3 Rightarrow b^3=x Rightarrow b=x^{frac{1}{3}}[/latex] [latex]log_{c}x=6 Rightarrow c^6=x Rightarrow c=x^{ frac{1}{6} }[/latex] [latex]log_{abc} x= frac{logx}{log(abc)}=frac{logx}{log(x^{frac{1}{2}}cdot x^{frac{1}{3}}cdot x^{ frac{1}{6} })}=[/latex] [latex]frac{logx}{log(x^{frac{1}{2}+frac{1}{3}+frac{1}{6} })}=frac{logx}{log(x^{frac{3}{6}+frac{2}{6}+frac{1}{6} })}=[/latex] [latex]frac{logx}{log(x^1)}=frac{logx}{log x}=1[/latex]
Wiedząc, że [latex]log_{a} x= 2, log_{b} x= 3, log_{c} x=6[/latex], oblicz [latex]log_{abc}x.[/latex]
Wiedząc, że [latex]log_{a} x= 2, log_{b} x= 3, log_{c} x=6[/latex], oblicz [latex]log_{abc}x.[/latex]...
Logarytmy maturalnie Wiedząc, że [latex]log_{c} m= 2 [/latex], [latex]log_{b} m = 5[/latex], [latex]log_{a} m = 10[/latex]oblicz [latex]log_{abc} m[/latex].
Logarytmy maturalnie Wiedząc, że [latex]log_{c} m= 2 [/latex], [latex]log_{b} m = 5[/latex], [latex]log_{a} m = 10[/latex]oblicz [latex]log_{abc} m[/latex]....
Oblicz : ∛abc wiedząc, że [latex] log_{2} [/latex]a=5 log0,01=b c=[latex] log_{0,05} [/latex]20
Oblicz : ∛abc wiedząc, że [latex] log_{2} [/latex]a=5 log0,01=b c=[latex] log_{0,05} [/latex]20...