Oblicz cztery początkowe wyrazy ciągu a) [latex]an=frac{1+(-1)^{2}}{n} [/latex] b)[latex]an=log_{2}4^{n}[/latex]

Oblicz cztery początkowe wyrazy ciągu a) [latex]an=frac{1+(-1)^{2}}{n} [/latex] b)[latex]an=log_{2}4^{n}[/latex]
Odpowiedź

a) [latex]a_{n} = frac{1+(-1)^{2}}{n} =frac{1+1}{n} = frac{2}{n}[/latex] [latex]a_{1} = frac{2}{1} = 2[/latex]   [latex]a_{2} = frac{2}{1} = 1[/latex]   [latex]a_{3} = frac{2}{3}[/latex]   [latex]a_{4} = frac{2}{4} = frac{1}{2}[/latex]   b) [latex]a_{n} = log_{2}4^{n}[/latex]   [latex]a_{n} = log_{2}4^{n} = ncdot{log_{2}4} = ncdot{2} = 2n[/latex]   [latex]a_{1} = 2cdot{1} = 2[/latex] [latex]a_{2} = 2cdot{2} = 4[/latex] [latex]a_{3} = 2cdot{3} = 6[/latex] [latex]a_{4} = 2cdot{4} = 8[/latex]    

a) an = [ 1 + (-1)^n]/ n a1 =  [ 1 + (-1)^1 ]/1 = [ 1  - 1]/1 = 0 a2 = [ 1 + (-1)^2]/2 = [ 1 + 1]/2 = 2/2 = 1 a3 = [ 1 + (-1)^3]/3 =  [ 1 - 1]/3 = 0 a4 = [ 1 + (-1)^4 ]/4 = [1 + 1]/4 = 1/2 b) an = log 2 [ 4^n] a1 = log 2 [ 4^1] = log 2 [ 4] = 2 a2 = log2  [ 4^2] = 2* log 2 [4] = 2*2 = 4 a3 = log 2 [4^3 ] = 3 * log 2 [4 ] = 3 *2 = 6 a4 = log 2 [ 4^4] = 4 * log 2 [4]  =  4*2 = 8 ======================================

Dodaj swoją odpowiedź
Matematyka

Oblicz cztery początkowe wyrazy ciągu [latex](a_n)[/latex] [latex]A) a_n= frac{1+(-1)^n}{n} \\ B) a_n=n^n \\ C) a_n= log_2 4^n[/latex]

Oblicz cztery początkowe wyrazy ciągu [latex](a_n)[/latex] [latex]A) a_n= frac{1+(-1)^n}{n} \\ B) a_n=n^n \\ C) a_n= log_2 4^n[/latex]...