M = 3,28 *10²³ kg R = 2440 km = 2,44 *10⁶ m G = 6,67 *10⁻¹¹ N * m²/kg² g = ? [latex]mg = frac{GmM}{R^2} / : m [/latex] [latex]g = frac{GM}{R^2} [/latex] [latex]g = frac{6,67 *10 ^{-11} frac{N*m^2}{kg ^2} * 3 ,28 *10 ^{23}kg }{(2,44 *10*6 m )^2 } = frac{21,88*10 ^{12} frac{N*m^2}{kg } }{5,95 *10 ^{12}m^2 } = 3,68 frac{N}{kg } = 3,7 frac{kg * frac{m}{s^2} }{kg } [/latex] [latex]g = 3,7 frac{m}{s^2} [/latex]
[latex]dane:\M = 0,33cdot10^{24} kg = 3,3cdot10^{23} kg\D = 4878 km \R = frac{D}{2} = 2 439 km = 2 439 000 m=2,439cdot10^{6} m\G = 6,67cdot10^{-11}frac{Nm^{2}}{kg^{2}}\szukane:\g_{M} = ?\\Rozwiazanie:\\g = Gcdotfrac{M}{R^{2}}\\g_{M} = 6,67cdot10^{-11}frac{Nm^{2}}{kg^{2}}cdotfrac{3,3cdot10^{23}kg}{(2,439cdot10^{6}m)^{2}}=6,67cdot10^{-11}cdotfrac{3,3cdot10^{23}}{5,9536cdot10^{12}} frac{m}{s^{2}}\\g_{M} = 3,7 frac{m}{s^{2}}[/latex] Odp. Wartość przyspieszenia na powierzchni Merkurego wynosi 3,7 m/s².