[latex]2x+3y-4=0[/latex]
[latex]3y=-2x+4[/latex]
[latex]y=-cfrac{2}{3}x+cfrac{4}{3}[/latex]
Punkt P należy do tej prostej, zatem
[latex]P = left(x, -cfrac{2}{3}x + cfrac{4}{3}
ight)[/latex]
[latex]|AP| = |BP|[/latex]
[latex]sqrt{(x-1)^2+left(-cfrac{2}{3}x+cfrac{4}{3}+6
ight)^2}=sqrt{(x-5)^2+left(-cfrac{2}{3}x+cfrac{4}{3}+2
ight)^2}[/latex]
[latex](x-1)^2+left(cfrac{22}{3}-cfrac{2}{3}x
ight)^2=(x-5)^2+left(cfrac{10}{3}-cfrac{2}{3}x
ight)^2[/latex]
[latex]x^2-2x+1+cfrac{484}{9}-cfrac{88}{9}x+cfrac{4}{9}x^2=x^2-10x+25+cfrac{100}{9}-cfrac{40}{9}x+cfrac{4}{9}x^2[/latex]
[latex]24x=-168[/latex]
[latex]x=-7[/latex]
Stąd [latex]P = (-7;6)[/latex]
[latex]|AP| = sqrt{(-7-1)^2+(6+6)^2}=sqrt{64+144}=sqrt{208}=4sqrt{13}[/latex]