Ochrona środowiska - wyczerpanie zasobów paliw kopalnych
Energia była, jest i będzie potrzebna ludziom w ich życiu. Jej postać, forma czy wykorzystanie może być różne, ale przede wszystkim potrzebujemy jej przy produkcji przemysłowej, transporcie, ogrzewaniu domostw czy oświetleniu. Początkowo tej energii dostarczało nam środowisko w postaci zasobów naturalnych nieprzetworzonych opału i paliw np. drewna, węgla brunatnego, kamiennego, ropy naftowej czy gazu. Również dawniej przetwarzano energię w wiatrakach czy młynach wodnych. Jednak ciągły wzrost zapotrzebowania na energię i to w różnych postaciach, zalety energii elektrycznej, kurczenie się zasobów kopalnianych, względy ekologiczne i ekonomiczne stawiają przed ludźmi nowe zadania i wyzwania w tej dziedzinie.
Kryzys energetyczny, który spowodował skokowy wzrost najpierw ceny ropy naftowej, a następnie wszystkich innych paliw oraz względy ochrony środowiska zwiększyły zainteresowanie nowymi, niekonwencjonalnymi źródłami i technologiami wytwarzania energii.
Te niekonwencjonalne źródła energii można podzielić na: źródła odnawialne i nieodnawialne :
1. odnawialne źródła energii elektrycznej: energia słoneczna, energia wiatru, pływów morskich, fal morskich i energia cieplna oceanów (maretermiczna)
2. źródła nieodnawialne: wodór, energia magneto-hydro-dynamiczna i ogniwa paliwowe. Energię wewnętrzną ziemi (geotermiczną) można zaliczyć do obu rodzajów źródeł: gejzery są źródłem nieodnawialnym, energia gorących skał zaś jest energią odnawialną.
Wykorzysta nie prawie wszystkich niekonwencjonalnych źródeł energii elektrycznej jest związane z minimalnym, bądź nawet żadnym wpływem na środowisko. Z tego względu stanowią b. Atrakcyjną alternatywę w stosunku do konwencjonalnych źródeł.
Ograniczenia w ich stosowaniu mogą być rodzaju:
· technologicznego - ze względu na postać ich występowania i możliwości praktycznego wykorzystania.
· ekonomicznego - związane z dużymi kosztami ich stosowania
· oraz politycznego lub prawnego – związanego z możliwościami dywersji w przypadku elektrowni jądrowych
· społeczna akceptacja to najważniejszy problem energetyki jądrowej. Wiążą się z nim dodatkowe koszty i przedłużająca się budowa elektrowni, co tym samym jeszcze bardziej je zwiększa. W krajach takich jak Francja, gdzie energetyka jądrowa jest powszechnie akceptowana, elektrownie jądrowe budowane są szybko, co sprawia, że wygrywają bez trudu konkurencję z elektrowniami innych typów.
Prognozy optymistyczne szacują udział niekonwencjonalnych źródeł energii elektrycznej na 15% w 2000 roku, pesymistyczne na 5%.
Elektrownie i elektrociepłownie – energia elektryczna i cieplna
To, że energia elektryczna jest najcenniejszą postacią energii finalnej, że jest ekologicznie czysta, że łatwo ją przesyłać i przetwarzać w różne postacie energii użytkowej rozumie cały świat. Nic więc dziwnego, że zapotrzebowanie na nią wszędzie rośnie. W krajach rozwiniętych udział energii elektrycznej w energii finalnej wzrasta coraz szybciej. Wzrost produkcji energii elektrycznej w latach 1980-1990 wynosił średnio rocznie we Francji 5.0%, w Szwecji 4.3%, w Japonii 4.0%, w Norwegii 3.8%, w USA 2.8%, w Niemczech 1.6%, w Wielkiej Brytanii 1.1%. Średnio na świecie - 3.65%, przy czym średni roczny wzrost 3.4% w latach 1980-1984 zwiększył się w latach 1 985-1990 do 3.9%. Z przytoczonych danych wynika, że nawet przy ustabilizowanym wzroście zapotrzebowania na energię elektryczną na poziomie 3.5% rocznie wszystkie kraje świata w 2010 roku będą zużywały o 70% więcej energii elektrycznej niż obecnie. Tak więc energia elektryczna i co za tym idzie elektrownie elektryczne są najbardziej pożądane.
Elektrownia, ogólnie mówiąc to zakład przemysłowy lub zespół urządzeń wytwarzający energie elektryczną z różnych form energii pierwotnej. Elektrownia oddająca na zewnątrz, na potrzeby odbiorców duże ilości ciepła nosi nazwę elektrociepłowni. Ze względu na postać energii pierwotnej elektrownie dzieli się ogólnie na: elektrownie cieplne klasyczne, elektrownie cieplne jądrowe tzw. jądrowe oraz wodne (w tym szczytowo-pompowe).
60% światowej energii elektrycznej dostarczają klasyczne elektrownie cieplne, 20% elektrownie jądrowe, zaś 16 % elektrownie wodne.
Technologie wytwarzania energii elektrycznej
W konwencjonalnych elektrowniach w wyniku spalania paliw otrzymujemy energię cieplną pary, a następnie w procesach ekspansji termicznej zachodzącej w turbinie zamiana energii cieplnej na energię kinetyczną (mechaniczną) i wreszcie w napędzanym przez turbinę generatorze zamianę energii kinetycznej na energię elektryczną. Wytworzona w generatorze energia elektryczna jest transformowana na wysokie napięcie i przesyłana liniami elektroenergetycznymi do odbiorców.
W elektrowniach konwencjonalnych poza energią elektryczną wytwarzana jest energia cieplna w postaci pary lub gorącej wody, która jest wykorzystywana albo jako para technologiczna bądź służy do podgrzewania wody sieciowej, krążącej w obiegu zamkniętym i ogrzewającej budynki.
Oddziaływanie na środowisko
Elektrownie i elektrociepłownie mają znaczący wpływ na powietrze atmosferyczne, glebę i wody, a za ich pośrednictwem na rośliny, zwierzęta, ludzi i konstrukcje metalowe (korozja).
Na środowisko naturalne oddziałują przede wszystkim:
· produkty spalania paliw, a więc pochodzące z obiegu paliwowego elektrowni. Należą do nich: spaliny, zawierające popiół lotny (pył), dwutlenek siarki, tlenki azotu, tlenek i dwutlenek węgla, żużel spod kotłów, odpady i ścieki z instalacji odsiarczania spalin.( pylenie występuje również w procesach transportu, składowania i rozładunku paliw)
· hałas towarzyszący przy rozładowaniu, kruszeniu węgla, wytwarzany przez wentylatory, sprężarki
· duży wpływ na środowisko naturalne mają ścieki przemysłowe, które wytwarzane są przy uzdatnianiu wody do obiegu parowego i do obiegu chłodzącego oraz z instalacji odsiarczania spalin, a także podgrzewanie wody w rzekach (jeziorach) w przypadku otwartego obiegu chłodzenia turbin. Chłodzenie w obiegu zamkniętym- wentylatorowe, kom i nowe- jest źródłem hałasu i roszenia przyległych terenów.
· obieg elektryczny poprzez hałas transformatorów i silników oraz oddziaływanie pól elektromagnetycznych ma także niekorzystny wpływ na środowisko naturalne.
Do atmosfery dostają się zanieczyszczenia pochodzące z licznych zakładów przemysłowych (w tym elektrowni kondensacyjnych, elektrociepłowni, kotłowni), ze zmotoryzowanego transportu oraz innych źródeł będących następstwem działalności ludzkiej. Wszystkie te zanieczyszczenia nazywa się antropogennymi w odróżnieniu od zanieczyszczeń wydzielających się ze źródeł naturalnych. Źródłami naturalnymi są: wulkany, pustynie, pożary lasów i stepów, powierzchnie mórz i oceanów (kryształki soli morskich), erozja gleb i skał, przemiany fizyczno-chemiczne (cząsteczki utworzone z zanieczyszczeń gazowych powstałych w wyniku rozkładu substancji organicznych).
Aby zapobiec znacznemu zagrożeniu środowiska ze strony energetyki, spowodowanemu wydzieleniem dużych ilości zanieczyszczeń gazowych (SO 2, NO X ) oraz pyłowych, są stosowane następujące środki działania:
· wzbogacanie paliw
· odpylacze o dużej skuteczności
· wysokie kominy i koncentracja spalin ( w jednym kominie ) w celu zwiększenia wyniesienia smugi dymu
· instalacje do odsiarczania spalin
· ograniczanie powstawania tlenków azotu oraz ich emisji
· sieci kontrolno-alarmowe
· spalanie paliwa interwencyjnego ( w okresie niekorzystnych warunków meteorologicznych )
· utylizacja odpadów paleniskowych
· nowe technologie energetyczne jak np. energetyka jądrowa, kotły fluidalne, zagazowanie węgla.
Skutki zanieczyszczenia powietrza atmosferycznego są wielorakie: choroby ludzi i zwierząt, niszczenie konstrukcji budowlanych, korozję metali, straty światła słonecznego i wynikające stąd zwiększenie zużycia energii elektrycznej na oświetlenie, straty transportu lotniczego i samochodowego w wyniku pogorszonej widoczności.
Wpływ elektrowni na wody powierzchniowe przejawia się zarówno w znaczeniu ilościowym jak i jakościowym. W elektrowni woda jest wykorzystywana w procesach produkcji energii elektrycznej do wytwarzania pary (obieg parowo wodny) oraz do ochładzania pary (obieg chłodzący skraplacze). Obieg parowo wodny wymaga uzupełnienia wodą o wysokiej jakości, natomiast obieg chłodzący potrzebuje dużej ilości wody. Woda chłodząca skraplacze odprowadza do otoczenia znaczne ilości ciepła. Ochładzanie wody podgrzanej powoduje powstawanie strat bezzwrotnych wody, wpływając na bilans wody w przyrodzie, oraz oddziałuje na środowisko, wprowadzając zmiany w ekosystemach wód powierzchniowych.
Użytkowanie wody przez elektrownie wpływa na organizmy żywe w sposób bezpośredni, w czasie ich przepływu wraz z wodą przez urządzenia obiegu chłodzącego, oraz w sposób pośredni w wyniku odprowadzania ciepła do wód powierzchniowych. Organizmy żywe przepływające przez urządzenia i przewody obiegu chłodzącego są narażone na: uszkodzenia mechaniczne, szok termiczny, działanie chemiczne.
Zanieczyszczenie atmosfery i tlenu wpływa pośrednio na rozwój lasu. Naruszona bowiem zostaje równowaga chemiczna i zmieniony odczyn pH w środowisku glebowym. Działanie bezpośrednie jak oparzenia tkanki roślinnej oraz ograniczenie intensywności fotosyntezy wskutek dużego zapylenia powierzchni liści, nie występuje , jeśli są stosowane elektrostatyczne odpylacze spalin (elektrofiltry) i wysokie kominy. W sposób pośredni na lasy oddziałuje dwutlenek siarki oraz tlenki azotu.
Polska leży na węglu, to nasze \"czarne złoto\", jednak koszt jego wydobycia rośnie. Musimy eksploatować coraz głębsze pokłady ze wszystkimi tego konsekwencjami dla życia ludzkiego oraz środowiska naturalnego. Spalaniu węgla towarzyszy emisja pyłów i szkodliwych gazów. W przypadku braku urządzeń oczyszczających spalenie 1 mln ton węgla kamiennego średniej jakości powoduje emisję około 20 000 t pyłów, 35 000 t SO2, 6000 t NOx, a także 2 mln ton CO2, którego nie potrafimy się pozbyć. Poza tym na wysypiska trafia około 300 000 ton popiołów. W Polsce w 1994 roku s paliliśmy 108 mln ton węgla kamiennego, w tym 32 mln ton w piecach domowych oraz lokalnych kotłowniach; ponadto 66 mln ton węgla brunatnego, który jest źródłem kilkakrotnie większej ilości popiołów niż węgiel kamienny. O ile pyły usuwano w 97%, to całkowi t a redukcja szkodliwych gazów wynosiła tylko 25%, a w przypadku przemysłu paliwowo-energetycznego nie przekraczała 3%. Największym zagrożeniem środowiska jest emisja dwutlenku siarki i tlenków azotu powodująca kwaśne deszcze, które niszczą życie w akwenach , dewastują olbrzymie obszary lasów i powodują korozję konstrukcji metalowych i niszczenie budynków. Roczne straty z tego powodu w Europie sięgają wielu miliardów dolarów. Nie do oszacowania są ogromne straty spuścizny kulturalnej - zniszczone pomniki, rzeźby i budowle, w szczególności z piaskowca oraz marmuru. A jak wycenić straty na zdrowiu?
Z powodu negatywnego wpływu na środowisko naturalne tradycyjnych elektrowni cieplnych bada się i wprowadza nowe techniki pozyskiwania energii elektryczej tj. wykorzystanie energii słonecznej i pochodnych (wiatru, maretermicznej, biomasy), fal i pływów (przypływów i odpływów) wodnych, geotermicznej, energii magnetohydrodynamicznej (MHD), czy ogniw paliwowych. Badanie prowadzone są także w celu poprawy efektywności dotychczasowych, konwencjonalnych źródeł energii.
Elektrownie jądrowe
W elektrowni jądrowej następuje w procesie rozszczepiania jąder atomów uranu, plutonu lub toru wyzwolenie energii cieplnej, którą wykorzystuje się do wytworzenia pary wodnej. Energia cieplna tej pary zostaje przemieniona w energię mechaniczną w procesie rozprężania pary zachodzącego w turbinie, a dalej następuje przemiana energii kinetycznej w energię elektryczną w napędzanym przez łopatki turbiny generatorze prądu.
Reakcja rozszczepienia jądra uranu, plutonu lub toru następuje wówczas gdy po zderzeniu neutronu z jądrem pierwiastka następuje pochłonięcie neutronu. W wyniku rozszczepienia jądra pierwiastka ciężkiego (jakim jest uran, pluton i tor) powstają dwa jądra pierwiastków lżejszych, wydzielając w skutek ubytku masy energię cieplną i wyzwalając od 0 do 8 neutronów. Wykorzystanie tej energii cieplnej jest celem eksploatacji reaktorów energetycznych,. Część pozostałej energii wydziela się w postaci promieniowania gama, dalsza jej część wydziela się z opóźnieniem jako promieniowanie beta i gama produktów rozszczepienia.
Obieg technologiczny elektrowni jądrowej dzieli się na:
· obieg pierwotny, który obejmuje rozszczepianie atomów, wytwarzanie energii cieplnej w reaktorze jądrowym i przekazanie jej w wymienniku do obiegu wtórnego
· obieg wtórny obejmuje wszystkie dalsze ogniwa procesu technologicznego wytwarzania energii elektrycznej
Podstawowym elementem obiegu pierwotnego jest reaktor. Najbardziej rozpowszechnione reaktory energetyczne to reaktory wodne i ciśnieniowe.
Awarie w elektrowniach jądrowych: amerykańskiej w Three Island w 1979 i radzieckiej w Czarnobylu 1986 wywołały wiele kontrowersji. Koncern ABB zaprojektowały elektrownię jądrową z reaktorem PIUS a koncern Westinghouse nazwał bezpieczny reaktor jądrowy kryptonimem AP-600. Oba reaktory charakteryzują się tym, że bezpieczeństwo ich pracy osiągnięto przez odwrócenie dotychczasowych zasad projektowania: zamiast powiększenia liczby urządzeń i stosowania wyrafinowanych układów bezpieczeństwa zastosowano tzw. pasywny (bierny system bezpieczeństwa). Polega on na tym, że reaktor jest bezpiecznie odstawiany przy jakimkolwiek zaburzeniu w jego pracy - bez działania urządzeń pomocniczych, a jedynie przez działanie sił grawitacji (np. naturalne chłodzenie powietrzne). Rozwiązania techniczne zastosowane przy projektowaniu elektrowni jądrowych z reaktorami PIUS i AP-600 wydają się tworzyć nową erę całkowicie bezpiecznej energetyki jądrowej.
Obiegi wtórne w elektrowni jądrowej to obieg parowy, wodny i elektryczny, które są w zasadzie identyczne jak w elektrowni konwencjonalnej. Dodatkowe wymagania co do elementów tych obiegów dotyczą zwiększonej niezawodności działania, wynikającej z specyfiki elektrowni jądrowej.
Wpływ na środowisko
W Polsce p odstawowym aktem prawnym, normującym działalność w zakresie wykorzystywania energii jądrowej na potrzeby społeczno-gospodarcze kraju jest ustawa z dnia 10. Kwietnia1986 roku “Prawo atomowe”.
Elektrownia jądrowa podczas eksploatacji wywiera wpływ na środowisko poprzez:
· wydzielenie produktów promieniotwórczych do atmosfery
· wydzielenie produktów promieniotwórczych do wód zrzutowych
· wydzielenie ciepła odpadowego do wody chłodzącej
Kopalnie uranu i zakłady wzbogacania uranu są źródłem zanieczyszczeń środowiska substancjami radioaktywnymi. Radioaktywne są odpady z tych zakładów - hałdy ich powinny być pokrywane asfaltem lub chlorkiem poliwinylu. Podczas produkcji paliwa jądrowego również powstają odpady radioaktywne - ciekłe i w postaci areozolu. Pierwszą barierę ochronną przed promieniotwórczymi produktami rozszczepiania są koszulki, w których umieszczane są tzw. pastylki paliwowe. Ich zadaniem jest odprowadzanie ciepła wytworzonego w paliwie do wody chłodzącej i uniemożliwienie prze d ostania się produktów rozszczepienia na zewnątrz.
Wypalone paliwo jądrowe wskutek swej promieniotwórczości niebezpieczne dla człowieka. Z tego względu musi być ono trwale usunięte do przestrzeni, gdzie jego promieniowanie jest niegroźne, bądź długo przechowywane w sposób bezpieczny, bądź wreszcie przerobione na produkty bezpieczne dla otoczenia.
Pierwszy sposób to gromadzenie wypalonego paliwa w głębokich, wyeksploatowanych kopalniach soli np. w Niemczech lub pod dnem mórz np. Szwecja.
Drugi sposób polega na przechowywaniu wypalonego paliwa w zbiornikach wodnych lub w zbiornikach betonowych, chłodzonych powietrzem. Przerób wypalonego paliwa jądrowego ma na celu usunięcie produktów rozszczepienia i odzyskanie nie wypalonego uranu i plutonu, pozostałego w paliwie. Wypalone paliwo jest przerabiane w specjalnych zakładach przetwórczych, do których paliwo jest transportowane po jego wstępnym wystudzeniu na terenie elektrowni. Przerób wypalonego paliwa jądrowego w celu uzyskania uranu i plutonu jest procesem radio aktywnym. Głównym źródłem radioaktywności są produkty korozji pojemników, w których przechowuje się wypalone paliwo jądrowe przed jego przerobieniem.
Potencjalnym źródłem skażenia środowiska może być transport materiałów promieniotwórczych, takich jak wypalone elementy paliwowe i zestalone odpady wysoko aktywne. Transport koncentratów uranu i wypalonego paliwa jądrowego jest obwarowany szczegółowymi przepisami, mającymi na celu wyeliminowanie niebezpieczeństw ich promieniowania podczas drogi. Wypalone pali w o jądrowe - dużo bardziej niebezpieczne niż koncentraty uranu - musi być przewożone w pojemnikach stalowych, które zapewniają eliminację promieniowania na zewnątrz pojemników i ich szczelność nawet przy bardzo ciężkich wypadkach drogowych i pożarze. Tran s port pojemników następuje koleją lub samochodami.
Działanie na rzecz ochrony środowiska wokół elektrowni jądrowej mają na celu zapobieżenie przedostaniu się na zewnątrz elektrowni jądrowej izotopów promieniotwórczych zarówno podczas normalnej eksploatacji elektrowni, jak i podczas potencjalnej awarii.
Nuklidy (tj. atomy określonego rodzaju scharakteryzowane przez skład jądra ) promieniotwórcze powstają w licznych procesach wewnątrz reaktora jądrowego. Powstają one w wyniku wzajemnego oddziaływania neutronów z materiałami reaktora. Większość powstałych nuklidów promieniotwórczych powstaje wewnątrz paliwa i w materiale reaktora. Większa część tych nuklidów promieniotwórczych ulega rozpadowi promieniotwórczemu albo pozostaje wewnątrz reaktora. Jedynie znikoma ich ilość dostaje się do atmosfery w postaci gazów i do zbiorników wodnych w postaci odpadów ciekłych. Natomiast nuklidy w postaci odpadów stałych są składowane w specjalnie do tego przygotowanych pomieszczeniach.
Poszczególne nuklidy promieniotwórcze różnią się okresem półrozpadu, a także ilościami które po wchłonięciu przez oddychanie lub przez przewód pokarmowy mogą być odłożone w różnych narządach ciała oraz szybkością wydalania ich z organizmu. W celu uwzględnienia rodzaju promieniowania i jego skutków biologicznych wprowadzono pojęcie równoważnika dawki. Operowanie równoważnikiem dawki pozwala dodawać dawki napromieniowania wywołane przez różne rodzaje promieniotwórczości, sprowadzać je do wspólnego mianownika pod względem skutków biologicznych. Równoważnik dawki jest więc dawka pochłonięta z uwzględnieniem potencjalnej możliwości spowodowana uszkodzeń tkanki ciała przez różne rodzaje promieniowania.
Należy pamiętać, że aktywność odpadów z energetyki jądrowej maleje stukrotnie w ciągu 600 lat, podczas gdy naturalne pierwiastki promieniotwórcze mają czas połowicznego rozpadu rzędu miliardów lat. Można powiedzieć, że w skali tysięcy lat energetyka jądrowa, zużywając uran, a w przyszłości również tor, będzie obniżać, a nie zwiększać zagrożenie ludzkości promieniowaniem jonizującym. Warto w tym miejscu jeszcze raz przypomnieć, że w popiołach usuwanych rocznie na wysypiska z elektrowni węglowej o mocy 1000 MW(e) znajduje się średnio ponad 3 tony uranu oraz około 7 ton toru i substancje te nie są w żaden sposób zabezpieczone. Poza tym człowiek jest poddawany promieniowaniu kosmicznemu i ziemskiemu, a także promieniowaniu materiałów budowlanych w pomieszczeniach zamkniętych i promieniowaniu zawartych w jego ciele pierwiastków promieniotwórczych.
Wybór lokalizacji elektrowni jądrowej następuje na podstawie raportu bezpieczeństwa lokalizacji, zawierającego charakterystykę terenu lokalizacji pod względem demograficznym, meteorologicznym, geologiczno-inżynierskim, hydrogeologicznym, komunikacyjnym, hydrotechnicznym , sejsmologicznym itp. oraz dane o napromieniowaniu ludności w otoczeniu elektrowni spowodowane eksploatacyjnym odprowadzaniem materiałów promieniotwórczych z elektrowni.
Rodzaje awarii mogących wystąpić w elektrowni jądrowej są rozpatrywane w raporcie bezpieczeństwa. Są one dzielone na trzy kategorie:
- awarie przeciętne, prowadzące co najwyżej do wyłączenia reaktora, po usunięciu awarii reaktor wznawia pracę;
- awarie rzadkie, nie powodujące jednak utraty szczelności obiegu pierwotnego lub odbudowy bezpieczeństwa i nie stanowiące zagrożenia na obszarze leżącym poza strefą ochronną;
- maksymalna awaria projektowa, przy której może wystąpić wydzielenie maksymalnej określonej w raporcie bezpieczeństwa ilości produktów rozszczepienia, ale możliwe być musi wyłączenie i wychłodzenie reaktora.
Strefę ochronna tworzy się wokół każdego obiektu jądrowego w celu zmniejszenia zagrożenia radiologicznego. W przypadku elektrowni jądrowej wyposażonej w co najmniej jeden reaktor o mocy cieplnej powyżej 1500 MJ/s obszar strefy ochronnej ustala się na dwie pod strefy o różnym stopniu ograniczeń dotyczących sposobu zagospodarowania. Np. granice pod strefy pierwszej ustala się w odległości nie mniejszej niż 2 km od budynku reaktora, zaś granice pod strefy drugiej ustala się w odległości dwukrotnie większej niż granice pod strefy pierwszej. Na obszarze i pod strefy elektrowni jądrowej jest zabronione przebywanie ludzi ( pobyt stały lub czasowy) lokalizacja, budowa oraz użytkowanie stałych i tymczasowych budynków nie związanych z działalnością jądrowego, a także prowadzenie produkcji rolnej lub leśnej przeznaczonej dla ludzi. Na obszarze drugim pod strefy elektrowni jądrowej jest zabronione przeznaczanie nowych terenów pod zabudowę mieszkaniową oraz lokalizacja innych inwestycji, przekraczających potrzeby ludności zamieszkującej na tym obszarze.
Ochrona przed promieniowaniem polega na minimalizacji czasu napromieniowania, stosowaniu odpowiednich osłon i wreszcie zachowaniu należytej odległości od źródła promieniotwórczości, gdyż moc dawki promienia jonizującego jest odwrotnie proporcjonalna do kwadratu odległości od źródła promieniowania.
Rozwiązania projektowe zapewniają, przy właściwej eksploatacji, ograniczenie do minimum możliwości awarii obejmującej swymi skutkami otoczenie elektrowni jądrowej.
W czasie eksploatacji elektrowni jądrowej powstają znaczne ilości różnorodnych odpadów ciekłych ( ścieków). Przed odprowadzeniem do kanalizacji i następnie do wód powierzchniowych (jezioro, rzeka), ścieki te są poddawane specjalnej obróbce, zapewniającej nieprzekroczanie dopuszczalnych wartości skażeń i zanieczyszczeń.
Gospodarka odpadami stałymi
Odpady stałe powstające w czasie eksploatacji elektrowni jądrowej, ze względu na stężenie substancji promieniotwórczych dzieli się na:
- wysoko aktywne, do których należą części wewnętrzne reaktorów znajdujące się w strefie promieniowania neutronowego, zużyte filtry do oczyszczania gazu i powietrza
- średnioaktywne, do których zalicza się części konstrukcyjne obiegu pierwotnego takie jak: rurociągi, armatura, izolacja termiczna, wkłady filtracyjne niektórych układów wentylacyjnych, części pomp, odpady metalowe, wymienialne elementy układu pomiarów i automatyki
- niskoaktywne, którymi są części konstrukcyjne i drobne wyposażenie układów pomocniczych obiegu pierwotnego, skażona odzież i obuwie specjalne, drewno, tworzywo sztuczne, odpady budowlane.
Odpady stałe wysokoaktywne przechowuje się stale w przechowalnikach w pobliżu basenu wypalonego paliwa. Pozostałe odpady stałe średnio i niskoaktywne przekazuje się do budynku zestalania odpadów. W budynku tym są one przechowywane od 3 do 5 lat w celu obniżenia aktywności. Po tym okresie, dla zmniejszenia ich objętości odpady są cięte lub prasowane i zestalane w asfalcie lub w beczkach lub prostopadłościennych pojemnikach. W ten sposób przygotowane i opakowane odpady okresowo magazynuje się na terenie elektrowni, a następnie wywozi do składowiska odpadów promieniotwórczych.
Gospodarka odpadami ciekłymi
W wyniku pracy układów oczyszczania ścieków promieniotwórczych powstają następujące odpady ciekłe:
· koncentrat powyparny
· zużyte wysokoaktywne jonity
· zużyte niskoaktywne jonity
Odpady te przekazuje się do budynku zestalania odpadów i przechowuje przez okres 3 do 5 lat w celu zmniejszenia ich aktywności, a następnie odparowuje, zestala i miesza z asfaltem. Pozostają one na trenie elektrowni do czasu wywiezienia do składowiska odpadów promieniotwórczych.
Promieniowanie jonizujące nie jest wykrywalne zmysłami człowieka. Zagrożenie stwierdza się za pomocą przyrządów dozymetrycznych. Przyrządy te są przystosowane do pomiarów dawek lub wykrywania skażeń promieniotwórczych.
Zasadniczym elementem układu pomiarowego, przekształcającym promieniowanie jonizujące w prąd elektryczny jest detektor promieniowania. Detektorami są: komory jonizujące, licznik Geigera-Mullera, liczniki scyntylacyjne.
Wśród przyrządów dozymetrycznych wyróżnia się wskaźniki promieniowania, monitory i dawkomierze.
Elektrownia jądrowa nie ma większości najgłośniejszych urządzeń, występujących w elektrowniach konwencjonalnych, takich jak młyny, wentylatory kotłowe urządzenia nawęglania itp. Ponadto ze względu na zaostrzone wymagania co do bezpieczeństwa jądrowego (specjalne wykonanie budynków, szersze strefy ochronne i in.) hałas jest mniej uciążliwy dla otoczenia.
Źródłami hałasu w elektrowni jądrowej są urządzenia maszynowni, chłodnie kominowe (jeśli występują) oraz wydmuchy pary wodnej z zaworów bezpieczeństwa i stacji zrzutowych. Dodatkowymi źródłami hałasu są wyciągowe wentylatory wentylacji technologicznej oraz wentylatory instalacji do oczyszczania gazów aktywnych.
Kryzys gospodarczy w latach 1989-1992 spowodował spadek zapotrzebowania na energię elektryczną, tak więc budowa nowych źródeł mocy stała się - przejściowo niepotrzebna. To sprawiło, że budowa elektrowni jądrowych w Polsce może być odłożona na okres po roku 2000. Planuje się budowę kilku elektrowni gazowych, które są mniej uciążliwe dla środo w iska od cieplnych węglowych.
Jak dotąd nie produkujemy energii elektrycznej z ekologicznie czystego źródła jakim jest reakcja rozszczepienia uranu przeprowadzona w sposób kontrolowany w reaktorze jądrowym. Miernikiem naszego zacofania w tej dziedzinie jest fakt iż w 34 krajach świata funkcjonuje kilkaset bloków jądrowych (432 w 1995r.) dając średni udział 17% w całości dostawy energii. Aż w 15 krajach udział energii elektrycznej z elektrowni jądrowych stanowi co najmniej 30%.
- Japonia – ponad 50 reaktorów
- Szwajcaria nie posiada ani jednej elektrowni na węgiel! – cała energetyka oparta jest na elektrowniach wodnych i jądrowych. Poza tym istnieje 1 elektrownia konwencjonalna na olej.
- wszyscy nasi sąsiedzi (prócz Białorusi) posiadają elektrownie jądrowe
Elektrownie na gaz ziemny
Gaz ziemny jest paliwem znacznie droższym od węgla, ale równocześnie o wiele czystszym ekologicznie. Budowa elektrowni gazowych trwa krócej i wymaga mniejszych nakładów niż elektrowni węglowych. Sprawność elektrowni gazowo- parowych jest prawie o 20% wyższa i wobec tego mniejsze jest zużycie wody niezbędnej do chłodzenia. W porównaniu z elektrownią węglową emisja szkodliwych substancji przez elektrownię gazową - przy wytwarzaniu tej samej ilości energii elektrycznej - jest mniejsza: CO2 o 50%, SO 2 o 99.9%, NO x o 75%, pyłów o 99.6%. W Polsce planuje się budowę kilku m.in. w Żarnowcu i Władysławowie.
Elektrownie wodne w Polsce
Energetykę wodną można podzielić na dwa rodzaje :
- wodne wykorzystujące potencjał energetyczny
- wodne szczytowo-pompowe przechowujące energię wytworzoną w innych elektrowniach (w Polsce elektrowniach cieplnych – węglowych) w okresach małego zapotrzebowania (w nocy) by oddać ją w okresach zapotrzebowania szczytowego.
Potencjał energetyczny naszych wód ocenia się na 12 TWh rocznie. Wykorzystywany jest obecnie w ok. 15%. Uwzględniając prawie całkowity brak ujemnego wpływu na środowisko, ten margines energetyki jest dla gospodarki b. ważny.
Kilka słów o największej w Polsce elektrowni szczytowo pompowej w Żarnowcu. W początkowych planach miała współpracować z elektrownią jądrową. Jej moc wynosi 800/716MW. Sztuczny zbiornik na szczycie wzgórza morenowego o pojemności prawie 14 mln metrów sześciennych i powierzchni 135 hektarów (bardziej obrazowo – 130 boisk piłkarskich) znajduje się 100 metrów powyżej Jeziora Żarnowieckiego, do którego spuszczana jest woda 4 rurami (średnica pozwalająca na wjazd autobusu). Dno zbiornika górnego jest wysłane asfaltem. Przecieki z niego mogłyby zakończyć się tragicznie!
Zasada działania: woda ze zbiornika górnego w godzinach szczytowego poboru mocy spuszczana jest rurami w dół; na końcu trafia na turbinę z generatorem i wytwarza prąd; trwa to około 4,5-5 godzin. Najczęściej nocą, gdy zapotrzebowanie na prąd elektryczny w sposób naturalny radykalnie spada – przeprowadza się cykl odwrotny. Silnik napędzający turbinę (w poprzednim cyklu pełnił rolę generatora) pobiera energię elektryczną z sieci – o tej porze jest jej nadmiar i należałoby odstawić bloki w elektrowniach cieplnych, co jest i nieekonomiczne, i kłopotliwe technicznie, elektrownia szczytowo-pompowa akurat odbiera nadmiar mocy. W ciągu 6 godzin zbiornik górny jest ponownie napełniony.
Elektrownie wiatrowe w Polsce
Najnowocześniejsze i najwydajniejsze elektrownie wiatrowe znajdują się na północy kraju niedaleko Lisewa. Pierwsza z nich powstała w 1991r. Produkcji duńskiej, wirnik o 3 łopatkach długości 12m umieszczony jest na wysokości 33m. Posiada moc 150kW – nie brzmi imponująco – można powiedzieć, że około 100 okolicznych domów ma prąd z powietrza. Ale imponuje tym, czego nie ma! W pierwszym roku uzyskano ok. 260 MWh. Gdyby tę samą wartość wytworzyć w elektrowni cieplnej, przyniosłoby to również skutki w postaci : 1200-2100kg dwutlenku siarki, 800-1550 kg tlenków azotu, 200-300 t dwutlenku węgla czy 10-18 t popiołu. I robi się o wiele ciekawiej. Obecnie pracują 3 takie elektrownie wiatrowe. Przy b. dużej ilości turbin (farmy) pojawia się inny problem – hałas.
Kolektory słoneczne
Uśredniony po szerokościach geograficznych, porach roku itp. strumień energii słonecznej na powierzchni
Ziemi wynosi około 164 W/m2 (w tym wypadku użyłem legalnych jednostek układu SI). Podkreślam, że jest to dobowa wartość średnia. Jeżeli uwzględnić tylko 8- godzinny “dzień pracy\" Słońca od 8 rano do 4 po południu, to dla miejscowości na szerokości geograficznej 40 o wspomniana wartość ta wyniesie około 600 W/m2. W ciągu “dnia pracy\" Słońce dostarczy wtedy 4.8 kWh/m 2 , co odpowiada mniej więcej energii 0.5 l benzyny na m 2 na dzień. Oczywiście, nieco większa jest ta wartość latem, a mniejsza zimą. No i, oczywiście, nocą nie otrzymujemy nic z owej darmowej energii.
Wyobraźmy sobie, że udało nam się zbudować domek jednorodzinny, którego powierzchnia dachu, nadająca się do zamontowania jakiegoś urządzenia przetwarzającego energię słoneczną w energię cieplną i elektryczną, wynosi 100 m 2 . Powiedzmy, że na początek chcemy Słońcem ogrzać nasz dom, wodę do kąpieli i zmywania naczyń. Ot, takie minimalistyczne wymagania cywilizacyjne.
Do ogrzania pomieszczeń potrzeba, podczas normalnej zimy, nie jakiejś zimy stulecia, około 100 kWh dziennie. Jeżeli przyjąć, że do naszego ogródka dociera 4.8 kWh/m 2 i podgrzewamy dom za pomocą płaskiego kolektora, w którym promieniowanie ogrzewa krążący w cienkich rurkach płyn niezamarzający, to przy około 50- procentowej sprawności potrzebujemy na to około 45 m 2 . Podobnie, aby podgrzać 400 l wody z 10 o do 50 o C, potrzeba dodatkowo 20 m 2 . Ponieważ urządzenie nasze nie będzie działać w nocy, dobrze by było zgromadzić zapas energii. Najefektywniejszym termodynamicznie sposobem jest jej magazynowanie w podgrzanej wodzie. Można oszacować, że potrzeba na to około 20 ton wody. Dwie duże cysterny na domek! A co z resztą cywilizacyjnych urządzeń?
Inne
-Walijska firma Dulas produkuje słoneczne układy zasilania lodówek i wyposażenia szpitalnego – wiele szpitali w Erytrei może dzięki nim pracować.
-Angielski inżynier Baylis zbudował proste radio zasilane ręcznie napędzanym dynamem – wystarczy 25s nakręcania na godzinę pracy radia. W RPA pewna firma produkuje 20tys. takich odbiorników miesięcznie.
-Samochody na prąd elektryczny ? Tradycyjne nie mają większego sensu, ale... Kilka miesięcy temu amer. firma ADL ujawniła swój silnik samochodowy oparty na ogniwie paliwowym tzn. na takim w którym energia chemiczna zamieniana jest bezpośrednio na elektryczną. (wodór + tlen = woda + prąd ze sprawnością 70-80%)
-idea zaspokojenia naszych potrzeb poprzez bezpośrednie wykorzystanie energii słonecznej “tu i teraz\" nie daje spokoju marzycielom. W połowie sierpnia br. w Montrealu zebrali się entuzjaści kosmicznej elektrowni słonecznej. Byłoby to gigantyczne urządzenie zawieszone na orbicie geostacjonarnej, przez całą dobę przetwarzające energię słoneczną w m i krofale, których strumień skierowany byłby do odbiornika na Ziemi i następnie przetworzony w energię elektryczną. Delegacja NASA przedstawiła na konferencji aż 30 pomysłów. W tzw. realistycznym wariancie stacja kosmiczna miałaby “zaledwie\" 50 km2, a stacja odbiorcza na ziemi 70 km2. Na pierwszy rzut oka pomysł wydaje się wspaniały. Ale jaka byłaby “maksymalna\" sprawność takiego urządzenia? Okazuje się, że każdy z etapów przetwarzania energii w tym urządzeniu, z energii słonecznej w elektryczną, następnie w mikrofale i znowu, już na ziemi, w elektryczność, ma sprawność poniżej 30%. Tak więc zaledwie 3% energii słonecznej dotrze w ten sposób z orbity do odbiorcy na ziemi.
- ogrzewanie mikrofalami
Rozwój tak znienawidzonej przez skrajne ruchy ekologiczne cywilizacji energochłonnej przeniósł do lamusa historii wielkoprzemysłową klasę robotniczą i uwolnił człowieka od ciężkiej pracy fizycznej. Było to możliwe, ponieważ wyczerpywaniu się prymitywnie dostępnej energii słonecznej towarzyszyły odkrycia naukowe pozwalające wykorzystywać nowe źródła energii, zdeponowane w ziemi. Nie ulega wątpliwości, że proces wyczerpywania się paliw kopalnych stanie się prędzej czy później dramatycznym problemem cywilizacji. Oszczędniejsze zużywanie energii, próby racjonalizacji jej zużycia, sięganie po dostępne w małej skali lokalne źródła, jak choćby wspomniane wcześniej bezpośrednie ogrzewanie domów słońcem, wszystko to może odrobinę opóźnić ten problem, ale go nie rozwiąże. Na razie zużywamy depozyt energii z przeszłoś c i, który jest jednak skończony. Ludzkość, by się rozwijać, musi sięgnąć po inne, nie związane z strumieniem energii słonecznej źródła energii. A Polska?
Sytuacja energetyczna Polski prowadzi do wniosku, że pilnym problemem jest zastępowanie węgla, jako źródła energii finalnej, energią elektryczną i gazem ziemnym, co oznacza, że do 2010 roku należy co najmniej podwoić wytwarzanie energii elektrycznej oraz znacznie zwiększyć dostawy gazu ziemnego. Do tego czasu należy przeprowadzić modernizację elektrowni i elektrociepłowni węglowych, a przede wszystkim zainstalować systemy oczyszczania gazów odlotowych. Sprawność usuwania szkodliwych gazów powinna przy tym wzrosnąć z obecnych 3% do 80-90%. W przeciwnym razie presja sąsiednich krajów europejskich wynikająca z umów międzynarodowych dotyczących poszanowania środowiska naturalnego będzie tak wielka, że zostaniemy zmuszeni do rezygnacji z elektrowni węglowych.
Musimy budować elektrownie gazowe, a także gazowo-parowe, które są o wiele bardziej proekologiczne od węglowych. Niestety, ich funkcjonowanie zależeć będzie od importu gazu, co uzależni naszą energetykę od Rosji, jeżeli nie zapewnimy jego dostaw z innych rejonów świata. Trzeba więc podjąć działania w sprawie budowy w Polsce pierwszej elektrowni jądrowej i o pracować program dalszego rozwoju energetyki jądrowej. W moim przekonaniu rozwój energetyki jądrowej i stopniowa likwidacja siłowni węglowych jest wariantem nie tylko najlepszym ze względów ekologicznych, ale również opłacalnym ekonomicznie. Te względy, j a k również wyczerpywanie się zasobów paliw organicznych, spowodują, że XXI wiek będzie wiekiem energetyki jądrowej.
Literatura:
“Energetyka a ochrona środowiska” J.Kucowski, D.Laudyn. M.Przekwas, W-wa 1994
“Energia. Jak oszczędzać energię. Poradnik użytkownika” 6/19 lipiec 1996
“Wiedza i życie” 11/1998 – “Energetyczne dylematy” – Łukasz A.Turski
“Wiedza i życie” 12/1997 – “Energia i my” – Łukasz A.Turski
“Wiedza i życie” 11/1996 – “Czy Polska potrzebuje energetyki jądrowej” – Andrzej Z. Hrynkiewicz
“Świat nauki” 11/1998 – “Termiczne ogniwa fotowoltaiczne” – T.Coutts, M.Fitzgerald
“Inteligentny dom” 1/1998-11-22
“Energetyka jądrowa, człowiek i środowisko” – Centrum Informatyki Jądrowej W- wa1998
“Energetyka jądrowa a środowisko” H.J. Czosnowscy W-wa 1975
Kilowaty z wierzby
Zmieniające się warunki funkcjonowania gospodarstw rolnych, rosnące wymagania proekologiczne, a także efekty ekonomiczne sprawiają, że ludzkość poszukuje alternatywnych nośników energii jako jednego z podstawowych czynników efektywności ekonomicznej prowadzonej działalności. Jednym z możliwych rozwiązań jest uwzględnienie w bilansie energetycznym odnawialnych źródeł energii, których udział zwłaszcza w rolnictwie może być znaczący.
Obecnie potrzeby energetyczne w kraju i na świecie zaspokajane są głównie poprzez spalanie surowców kopalnych. Utrzymanie takiego stanu rzeczy w dalszej perspektywie jest niemożliwe z dwóch powodów. Jednym jest wyczerpywanie się zasobów kopalnych surowców energetycznych, których wystarczy według najnowszych źródeł na około od kilkudziesięciu lat (gaz, ropa) do 200 lat (węgiel). Gdyby jednakże nawet przyjąć, że odnalezione zostaną nowe złoża surowców kopalnych, to stajemy przed kolejną barierą, tzw. barierą przetwarzania. Środowisko naturalne nie jest już w stanie wchłonąć produktów spalania, zwłaszcza takich jak CO2, SO2, NOx, bez skutków ubocznych, z których najbardziej zgubne są kwaśne deszcze oraz globalne ocieplenie.
Wzrost udziału odnawialnych źródeł energii przyczynia się do poprawy efektywności wykorzystania i oszczędzania zasobów surowców energetycznych oraz poprawy stanu środowiska naturalnego. Ponadto racjonalne wykorzystanie energii ze źródeł odnawialnych jest jednym z istotnych elementów zrównoważonego rozwoju przynoszącym wymierne efekty ekonomiczno - ekologiczne. Teoretyczne zasoby niekonwencjonalnych źródeł energii w Polsce są bardzo duże i przekraczają zużycie wszystkich paliw kopalnych.
Istnieje jednak szereg uwarunkowań, które ograniczają wykorzystanie tego potencjału. Do najważniejszych należy zaliczyć opłacalność ich stosowania przy danym poziomie cen tradycyjnych nośników energii. Ważne jest także stworzenie właściwego lobby w społeczeństwie, które promować będzie paliwa odnawialne jako proekologiczne. Zasoby energii niekonwencjonalnych w poszczególnych krajach są zróżnicowane
i zależą od wielu czynników, głównie są to: położenie geograficzne, warunki klimatyczne i wodne, ukształtowanie terenu.
Jak już wcześniej wspomniano wykorzystanie naturalnej odnawialnej energii powinno być szczególnie preferowane. Jednym ze sprawdzonych sposobów jest wykorzystanie produktów roślinnych jako materiały energetycznego.
Powszechne zainteresowanie produkcją roślinnych paliw inaczej biopaliw wynika z kilku względów, główne z nich to:
odnawialność źródeł surowcowych,
znaczne ograniczenie emisji substancji trujących do atmosfery oraz zerowy bilans obiegu dwutlenku węgla
w przyrodzie,
ograniczenie bezrobocia na terenach wiejskich,
możliwość wykorzystania ziem skażonych lub leżących odłogiem.
Energetyczne wykorzystanie biomasy znajduje coraz szersze poparcie, aczkolwiek nie należy uważać, że jest to panaceum na problemy naszego rolnictwa. Wykorzystanie biomasy, zarówno odpadowej jak i uprawianej na cele energetyczne może pobudzić do działań lokalną społeczność.
Wierzba jest obecnie bardzo popularnym paliwem stałym z biomasy. Można ją uprawiać na wielu rodzajach gleb. Do każdego jednak rodzaju gleby należy dobrać odpowiednie genetycznie klony. Należy także zwrócić uwagę na warunki fizjograficzne upraw wierzby: nachylenie stoku, poziom wód gruntowych, nasłonecznienie, długość okresu wegetacyjnego itp. Dobór odpowiednich klonów wierzby Salix viminalis do warunków jej uprawy gwarantuje wysokie plony biomasy.
Wierzba wymaga gleby należycie uprawionej i głęboko spulchnionej. Bardzo ważnym elementem jest sadzenie wierzby w glebę odchwaszczaną, ponieważ walka z chwastami po posadzeniu jest utrudniona i bardzo kosztowna. Drugim ważnym elementem przygotowania roli jest dostosowanie odczynu kwasowo-zasadowego gleby i składników pokarmowych dla potrzeb wierzby. Odpowiednim na glebach mineralnych i organicznych odczynem jest pH pomiędzy 5,5 a 6,5. Ponadto woda, składniki pokarmowe i powietrze muszą być równocześnie dostępne w glebie dla korzeni penetrujących i wzrastających w jej głębsze warstwy. Nawożenie pierwszorocznej plantacji wierzby powinno być bardzo ostrożne i nie powinno przekraczać 20 kg N, 18 kg P2O5 i 20 kg K2O w przeliczeniu na czysty składnik. W następnych latach uprawy można stosować bardziej intensywne nawożenie mineralne. Wielkość N, P, K, powinna oscylować wokół wartości 40, 60, 80 kg czystego składnika na hektar. Przy ustalaniu wysokości dawek nawozów mineralnych należy uwzględnić zasobność gleby (przeprowadzić analizę gleby). Od prawidłowego przygotowania gleby zależy pracochłonność sadzenia.
Wierzbę rozmnaża się za pomocą zrzezów. Zrzezy powinny mieć długość 25 cm i więcej, ich grubość wynosić powinna od 5 do 12 mm. Przeciętna grubość mierzona w środku wynosić powinna 7 mm. Zrzezy powinny być czyste, zdrowe i o odpowiedniej wilgotności. Zakończenia sadzonek powinny być zabezpieczone parafiną. Najbardziej odpowiednimi są sadzonki wykonane z odrostów jednorocznych lub dwuletnich. Bardzo ważnym jest, aby była określona liczba uśpionych pączków na całej długości zrzezu. Niedopuszczalnym jest liczba mniejsza niż 5 pączków.
Zrzezy powinno sadzić się wiosną, chociaż możliwe jest sadzenie jesienią. Wierzbę z przeznaczeniem na opał sadzić powinno się w ilości około 30-40 tys. zrzezów na 1 ha w zależności od technologii sadzenia. Zrzezy przed sadzeniem powinny być moczone przynajmniej 48 godzin. Pamiętać przy sadzeniu należy o biegunowości sadzonek. Posadzenie odwrotne powoduje opóźnienie wegetacji o około 3 tygodnie. Sadzić można maszynowo lub ręcznie. Z powodu wysokiego kosztu zakupu specjalistycznej sadzarki oraz dużego bezrobocia na terenach wiejskich najbardziej rozpowszechniło się sadzenie ręczne. Szacuje się, że jeden człowiek dziennie powinien posadzić około 8-10 arów (pod warunkiem dobrze przygotowanej gleby).
W pierwszym roku uprawy wierzba jest wrażliwa na zachwaszczenie. Skutecznym sposobem niszczenia chwastów jest pielęgnacja chemiczno-mechaniczna. W dalszych latach użytkowania plantacji wierzbowych, pielęgnacja jest z reguły zbędna. Duże zniszczenia na plantacjach powodowane są przez zwierzęta dziko żyjące: sarny i jelenie. Do zabezpieczenia przez zgryzaniem użyć należy repelentu STOP Z (może być stosowany w okresie wegetacji roślin).
Wierzba narażona jest na wiele chorób grzybowych, wirusowych, a także atakowana przez wiele insektów. Większość chorób jest znana. Na prośbę plantatora inspektorzy z Inspekcji Ochrony Roślin określą sposób przeciwdziała chorobom.
Po zakończeniu wegetacji przez wierzbę, gdy z pędów opadną liście, można przystąpić do ich wycinania. Odrosty powinny być ścięte tak, aby ponad ziemią pozostały przynajmniej 2-3 uśpione pączki. Zbiór przeprowadza się maszynowo lub ręcznie. W przypadku przeznaczenia wierzby na cele energetyczne, zbiór przeprowadza się co dwa lub trzy lata. Całkowity okres użytkowania karpy określa się na 24-30 lat w zależności od odmiany i kierunku użytkowania. Po tym okresie glebę trzeba rekultywować.
Najbardziej aktualne obecnie i niezależne od wielkości produkcji biomasy wierzbowej wydaje się być wykorzystanie jej na cele energetyczne. Wierzbę nieprzetworzoną można spalać we wszystkich rodzajach pieców, jednak wiąże się to z małą sprawnością wykorzystania energii. Do znacznie bardziej efektywnego a zarazem oszczędnego spalania używa się pieców
z systemem pirolitycznego lub fluidalnego zgazowywania. Sprawność tych urządzeń może dochodzić nawet do 93%.
Najlepsze efektywnie spalania uzyskuje się stosując drewno wierzbowe w stanie "powietrznie suchym". Jest to drewno naturalnie suszone po ścięciu przez okres około 3-4 miesięcy w osłoniętych ale przewiewnych wiatach. Wyschnięte w takich warunkach drewno zawiera od 23 do 28 % wilgotności, a jego wartość opałowa wynosi ok. 14 GJ/tonę. Drewno wierzbowe "powietrznie suche" daje się łatwo zrębkować. Zrębki spala się jednorodnie w specjalnych piecach lub dodaje się do miału węglowego i spala w skojarzeniu. Spalanie skojarzone jest najbardziej efektywne. Przeprowadzone próby spalania mokrych zrębków o wilgotności 50-60%
z miałem (10% wilgotności) dały najlepsze wyniki ekonomiczne. Z drewna wierzbowego można produkować brykiety opałowe lub granulat opałowy. Produkcja obydwu form wymaga jednak dosuszania co wiąże się z wykorzystaniem dodatkowej energii. W wielu przypadkach rachunek ekonomiczny jest niekorzystny.
Wierzba wykorzystywana jest także do produkcji metanolu oraz może być zastosowana w ochronie powietrza, wody i gleby. Szerokie możliwości zastosowania wierzby powinny spowodować, że stanie się ona całkowicie nowym produktem rolniczym.
Lasy pokrywają ok. 20% powierzchni Ziemi. Można je podzielić na 3 główne typy: wilgotne lasy równikowe, lasy liściaste strefy klimatu umiarkowanego i bory iglaste. Lasy zapewniają schronienie dla ludzi i zwierząt oraz są źródłem drewna opałowego i konstrukcyjnego, żywności i surowców, takich jak np. kauczuk i oleje roślinne. Niestety wciąż jeszcze lasy na całym świecie są przez człowieka niszczone lub uszkadzane w zastraszającym tempie. W XX wieku powierzchnia wilgotnych lasów równikowych zaczęła się zmniejszać w coraz szybszym tempie. Największy wpływ na te zmiany miał człowiek. Rozwój cywilizacji ,postęp techniczny niszczy pośrednio a także bezpośrednio gospodarkę leśną lasów równikowych.
Wyrąb jest głównym czynnikiem zagłady lasów tropikalnych . Wilgotne lasy tropikalne , równikowe nazywane były kiedyś zielonym piekłem. Tajemnicze niedostępne , pełne groźnych niespodzianek : śmiertelnie kąsających węży i owadów, trujących roślin , zarazków , tropikalnych chorób .Pełne nieprzebranych bogactw : cennych roślin jadalnych i leczniczych , a przede wszystkim cennych gatunków drewna .Niestety heban, palisander i mahoń kojarzą się częściej z drogimi , stylowymi meblami niż z szumiącym drzewem. Najtrudniej jednak wyobrazić sobie ich związek ze światowym bilansem tlenu, którego są głównym „producentem”.
Szlachetne drzewa tropikalne rosną wplecione w setki innych gatunków ,żeby więc zdobyć kilkanaście wyniosłych pni , trzeba zniszczyć przy okazji wielkie przestrzenie lasu.. Padające pnie miażdżą rosnące pod nimi inne rośliny, mniej szlachetne (z punktu widzenia ceny)gatunki drzew. Wywóz drewna niszczy tez delikatną , cienka warstwę gleby. Gleba lasów tropikalnych jest uboga w pierwiastki odżywcze , które natychmiast są pobierane , kiedy tylko dotrą na powierzchnię wraz z obumarłymi liśćmi. Gdy tego dopływu pokarmu z góry zabraknie lub gdy bakteriom zabraknie wilgoci , cały las ulega dewastacji.
Zapotrzebowanie na szlacheckie gatunki drzew wciąż rośnie. Zużycie tropikalnego drewna w krajach rozwiniętych wzrosło w ciągu ostatnich czterdziestu lat niemal piętnastokrotnie. Z roku na rok wzrasta zastosowanie cennego tropikalnego surowca: elementy nośne konstrukcji budowlanych (okazało się, że drewno jest znacznie bezpieczniejsze niż konstrukcja metalowa przy budowie wielkich hal – w razie pożaru zwęgla się, ale nie odkształca jako stalowe pręty). Cennym materiałem pozyskanym z lasów równikowych jest drewno hebanowe. Japonia, największy na świece konsument tropikalnego drewna – ponad połowa światowego importu – kontraktuje całe połacie lasu (w Papui-Nowej Gwinei oraz na Borneo) i to nie głównie w celu pozyskania cennych gatunków, ale raczej na pulpę do produkcji kartonu na opakowania telewizorów, wzmacniaczy albo elektrycznych szczoteczek do zębów.
Cenne drewno to tylko jedna z przyczyn wycinania lasów równikowych. Jednym z ich większych zagrożeń jest także rolnictwo. Wypalanie lasu pod uprawę było od setek lat naturalnym sposobem korzystania z gleby przez wiele plemion zamieszkujących tropiki w Ameryce Południowej czy na Borneo. Jednak obszary pogorzelisk były stosunkowo niewielkie i choć po ich wyjałowieniu, po dwóch , trzech latach uprawy leśni rolnicy przenosili poletka dalej, pozostawiona polana ciągle jeszcze była w zasięgu klimatycznego oddziaływania lasu; docierały też wszystkie nasiona , zaczynając pierwsze stadia sukcecji. Pionierskie rośliny rozpoczynały odnawianie lasu, wypełniając powstałą lukę. Wyraz ze wzrostem powierzchni wyrębów wzrastała tez odległość odkrytej ziemi od lasów, co powoduje wysychanie i tak już wyjałowionej mizernej gleby , jej erozję, a następnie pustynnienie.
Na ogromna skalę rolnicza dewastacja ma miejsce także w wyniku fatalnego skutkach programu rządu brazylijskiego, chcącego skierować osadnictwo w głąb tropikalnego lasu nad Amazonką. Rozwój rolnictwa ma bardzo duży wpływa na zmiany siedliskowe zachodzą w skutek różnych zabiegów agrotechnicznych, które towarzyszą, uprawom, jak odwadnianie lub nawadnianie, mechaniczna uprawa roli (np. orka, bronowanie) i chemizacja podłoża przez nawożenie i stosowanie pestycydów. Zabiegi te w wielkim stopniu przekształcają siedlisko, co oczywiście ma wpływ również na występującą w sąsiedztwie roślinność naturalną.
Bezpośredni wpływ na pokrywę roślinną, objawia się głównie tworzeniem monokultur, niekiedy nawet na wielkich przestrzeniach; wprowadzeniem celowym lub niezamierzonym nowych gatunków; powstawaniem nowych zbiorowisk roślinnych, jak np. zbiorowiska chwastów lub roślin ruderalnych. Wraz z osadnictwem do lasów równikowych wkracza zjawisko zanieczyszczenie wód różnego rodzaju ściekami, wskutek czego ograniczona bywa możliwość bezpośredniego korzystania z tych wód .Rośnie zanieczyszczenie powietrza .
Pierwotnie zanieczyszczenie atmosfery, jeszcze przed działalnością człowieka, było niewielkie i najczęściej miało charakter lokalny; powodowane było przez pożary i wulkany. Początkowo i działalność człowieka nie miała większego wpływu na stan czystości atmosfery. Dopiero rozwój przemysłu i motoryzacji, jaki nastąpił w ciągu ostatnich kilkudziesięciu lat, wyraźnie wpłyną na zmiany w atmosferze. Najgroźniejsze są wszelkiego rodzaju pyły i gazy powstające jako wynik działalności przemysłu i motoryzacji.
Pyły powstają głównie podczas spalania węgla , a także przy produkcji materiałów budowlanych (cementowanie).
Do atmosfery dostają się również gazy i pary, których źródłem są zakłady przemysłowe i pojazdy mechaniczne. Powstaje dużo dwutlenku węgla i pary wodnej, ale najgroźniejsze dla życia są tlenek węgla, dwutlenek siarki, chlor, siarkowodór .
Pyły i dymy unoszące się w powietrzu pochłania znaczną ilość promieniowania słonecznego, przez co obniżają produkcję roślinną. Pyły osiadające na liściach utrudniają wymianę gazów między liściem, a otoczeniem, co również prowadzi do zmniejszenia wydajności produkcji materii ograniczonej. Dwutlenek siarki, wnikający do wnętrza rośliny – głównie liści, powoduje uszkodzenie komórek, co prowadzi do obumierania liści, a w konsekwencji – do śmierci rośliny. Przykładem mogą być zamierające lasy wokół zakładów przemysłowych, gdzie wydziela się dużo tego gazu. Zjawiskiem bardzo niekorzystnym dla gleby jest obniżanie się poziomu wód gruntowych. Głównymi przyczynami tego zjawiska są:
- pokrycie dużych powierzchni przez elementy trwałe (zabudowę, beton, asfalt), wskutek czego wody opadowe nie mogą przesiąknąć w głąb gleby; a o ca tym idzie giną rośliny
- szybki spływ wód opadowych spowodowany skanalizowaniem dużych powierzchni i uregulowaniem cieków, wskutek czego nie nadążają one w nasycaniu gleby wilgocią;
- liczne melioracje wodne oprowadzone prawie wyłącznie w celu osuszenia miejsc podmokłych i bagien. Zabiegi te dają wprawdzie doraźne i krótko trwałe korzyści, ale powodują obniżenie poziomu wód gruntowych nie tylko w obrębie meliorowanego, lecz również na terenach przyległych..
Bardzo niekorzystnie działają na glebę różne zanieczyszczenia. Do gleby trafiają różne związki chemiczne powodujące bardzo niekorzystne zmiany, jak: alkalizacje, zakwaszanie, zasolenie itp. Oczywiście wpływa to ujemnie na rośliny, a także na ich produkcję Do gleby dostają się również substancje trujące, jak : pestycydy, związki metali ciężkich (np. związki ołowiu z gazów spalinowych) i inne. Pod ich wpływem giną organizmy glebowe. Trucizny te dostają się również do roślin, powodując ich obumieranie.
Bezpośrednia działalność człowieka polega na fizycznym niszczeniu lub zmienianiu pokrywy roślinnej; człowiek dokonuje tego przez wypalanie, przenoszenie roślin z miejsca na miejsce , mechaniczne niszczenie całych roślin lub ich części.
Zabójcze są też dla lasu wielkie plany gospodarcze polegające na budowie zapór dla elektrowni wodnych, co powoduje zatapiane jednych ogromnych obszarów lasu i zmianę stosunków wodnych na innych . Także budowa wielkich dróg przecina ciągłość dużych kompleksów tropikalnego lasu i zagrażania życiu wędrujących zwierząt. Często dewastacja lasu przebiega w 3 etapach. Najpierw wielkie kopalnie wykupują obszar lasu i za pomocą potężnych buldożerów wytyczają drogi dojazdowe do miejsc, gdzie eksploatują drewno. Wędrują za nimi ubogie rodziny, szukając miejsca na farmę. Wypalają resztki lasu w celu zdobycia gruntu pod uprawy. Powoduje to nieodwracalne zniszczenia biocenozy pierwotnej. Nawet w przypadku odnowienia się lasu jego skład i struktura nie dorównuje strukturom poprzednim. Po dwóch, trzech latach na wyjałowionej ziemi można już tylko zasiać trawę dla bydła. Wypasanie kończy wkrótce dzieło destrukcji. Ostatnio na wielka skale wycina się las, by zmienić go na pastwiska dla bydła hodowlanego na tanią wołowinę na hamburgery. To taka moda na McDonaldy łączy się z zaburzeniem światowego bilansu tlenu.
Rabunkowa gospodarka leśna w obszarach równikowych może być bezpośrednią przyczyną zaburzeń w składzie powietrza. Co roku znika z powierzchni globu obszar lasu tropikalnego wielkości Austrii. Ekologiczne konsekwencje takiego stanu są przerażające. Przede wszystkim lasy tropikalne dzięki ogromnej, zielonej masie, która oddycha , paruje, a w czasie fotosyntezy pobiera z atmosfery CO2 i wydziela tlen , maja ogromne znaczenie dla światowego bilansu tlenu , utrzymują wilgotność na obszarach , gdzie rosną, i dostarczają wody deszczom zraszającym ogromne obszary sąsiednie. Oznacza to, że lasy rosną nie tyle tam gdzie jest deszczowy klimat , ale deszcz powstaje dzięki parowaniu lasów. Są więc lasy współtwórcami swego środowiska. Gdy ich zabraknie – zabraknie też wody i cienia. Ocenia się, że susze spowodowane zmianą klimatu po wycięciu lasów, dotknęły w tropikach ponad jedne miliard ludzi żyjący z roli. Zmieniony klimat na ogromnych obszarach, rolnictwo zagrożone brakiem wody, tragedia wielu plemion nagle pozbawionych naturalnego środowiska – to tylko niektóre z najbardziej spektakularnych efektów niszczenia lasów tropikalnych .Wycięcie tak dużych kompleksów leśnych może spowodować zmiany w rozkładzie i kierunkach wiatrów , prądów morskich oraz rozkładu i wielkości opadów atmosferycznych a także ma ścisły związek z ociepleniem się klimatu na Ziemi. Wskutek zniszczenia dużych połaci leśnych ,nastąpią zakłócenia w obiegu wody w przyrodzie , co w konsekwencji może doprowadzić do wystąpienia susz, powodzi, wzmożonej erozji gleby. Deszczowe lasy tropikalne są bogate w rośliny z których pozyskuje się różnego rodzaju preparaty medyczne .
Oczywiście, tysiące ludzi na całym świecie, przejętych zagrożeniem tropikalnych lasów, ze względów racjonalnych i emocjonalnych działa na rzecz zahamowania tego procesu. Wielkie organizacje ekologiczne zaproponowały m.in. bojkot tropikalnego drewna sprowadzanego do krajów Zachodu. Wielu ekspertów obawia się jednak, że na dłuższą metę skutek takiego bojkotu mógłby być wręcz odwrotny. Ceny drewna zaczną spadać i wtedy eksporterzy zdecydują się na wycięcie lasów na pulę do produkcji papieru. Program ochrony powinien wprawdzie kontrolować eksploatację lasów, ,ale równocześnie zachęcać do rekultywacji terenów już zniszczonych i zakładania tam plantacji cennych gatunków drzew przemysłowych. Ważne jest również zachowanie tzw. banku genetycznego, czyli stałego źródła pełnowartościowych nasion pochodzących z obszarów niezmienionych – rezerwatów i parków narodowych.
Z pobudek czysto praktycznych – zapewnia stałego dopływu nowych zasobów drewna powstało Międzynarodowe Porozumienie w Handlu Drewnem Tropikalnym ( ITTA ). Miało ustalić zasady handlu drewnem z krajami rozwijającymi się, współpracy importerów z eksportami w gospodarowaniu lasami tropikalnymi, a także finansować badania nad lepszymi sposobami uzyskiwania i wykorzystania drewna. Niestety , do tej pory niewiele krajów eksportujących przejęło się proponowanymi rozwiązaniami. .
Osobnym zagadnieniem jest też problem utraty wielu gatunków roślin i zwierząt. W lasach tropikalnych występują najbogatsze w gatunki roślin i zwierząt. Z każdym ginącym gatunkiem tracimy zapisy jakiejś informacji genetycznej.
Połowa brazylijskiego stanu Rondonia zastała pozbawiona lasu w ciągu dosłownie kilku lat. Tu, tak jak i wielu innych miejscach, tubylcze plemiona żyjące w lesie tracą swój dom, rozpada się ich kultura. Beznadziejny, zdeterminowany protest plemion indiańskich znad Amazonki i Orinoko zwraca uwagę światowej opinii publicznej – mniejszą jednak uwagę rządów. Kraje posiadające lasy tropikalne wytykają protestującym obywatelom krajów Zachodu, że bezkarnie wycięli swoje lasy w poprzednich stuleciach m.in.. po to, by osiągnąć wysoką zamożność i poziom cywilizacji, jaki mają w tej chwili. Jeśli więc chcą, by zahamować rzeź lasów – muszą za to zapłacić. Nic jednak nie wskazuje, by tak się stało. Dowodem tego jest brak porozumienia w tej sprawie podczas „ Szczytu Ziemi” w Brazylii. Nic więc też nie wskazuje, by katastrofalne tempo zanikania lasów tropikalnych zmalało. Jak to ktoś poetycznie określił: „Zielone piekło idzie do nieba”...
Do pracy wykorzystano materiały:
„Ekologia- wybór przyszłości ”autor Anna Kalinowska
„Geografia świata’autor Zbigniew Podbielkowski