Ciało porusza się po prostej ze stałym przyspieszeniem (a = 2m/s^2 V0 = 0m/s). W której kolejnej sekundzie licząc od początku ruchu przebywa ono drogę 5m?

Ciało porusza się po prostej ze stałym przyspieszeniem (a = 2m/s^2 V0 = 0m/s). W której kolejnej sekundzie licząc od początku ruchu przebywa ono drogę 5m?
Odpowiedź

Dane: [latex]a=2frac{m}{s^2}[/latex] [latex]v_0=0[/latex] [latex]s=5m[/latex] Szukane: t Wzór ogólny dotyczący drogi w ruchu jednostajnie przyspieszonym: [latex]s=v_0cdot t + frac{acdot t^2}{2}[/latex] Ponieważ [latex]v_0=0[/latex] [latex]s=0 + frac{acdot t^2}{2}=frac{acdot t^2}{2}[/latex] Przekształcając wzór: [latex]t=sqrt{frac{2s}{a}}=sqrt{frac{2cdot 5[m]}{2frac{m}{s^2}}}=sqrt{5[s^2]}=oxed{sqrt{5}[s]}[/latex] Odpowiedź: Ciało przebędzie drogę 5m po [latex]sqrt{5}[/latex] sekundach, czyli po około 2,23s. Będzie to więc trzecia sekunda jego ruchu.

W pierwszej sekundzie ruchu cialo przebedzie droge s=at²/2 s1=2/2=1 m Stosunek pzebytych drog w kolejnych sekundach ruchu jednostajnie przyspieszonego ma sie tak, jak stosunek kolejnych liczb nieparzystych: s1:s2:s3:...=1:3:5... Odp. Droge 5 m cialo przebedzie w trzeciej sekundzie ruchu.

Dodaj swoją odpowiedź