[latex]E_{3 o 2}=-13,6eVcdot ( frac{1}{3^2}- frac{1}{2^2} )=-13,6eVcdot (frac{-5}{36} )= oxed{1 frac{8}{9} eV }approx3cdot 10^{-19}J\\\ hcdot frac{c}{lambda} = 3cdot 10^{-19}J\ lambda= frac{hc}{3cdot 10^{-19}J} = frac{6,63cdot 10^{-34}cdot 3cdot 10^{8}}{3cdot 10^{-19}J} approx6,58cdot 10^{-7}=658nm[/latex] Jest to światło czerwone.
[latex]dane:\n = 2\m = 3\E_1 = -13,6 eV = -21,76*10^{-19} J\1 eV = 1,6*10^{-19} J\h = 6,63*10^{-34} J*s\c = 3*10^{8}frac{m}{s}\szukane:\Delta E = ?\lambda = ?[/latex] [latex]Delta E = E_3 - E_2 = frac{E_1}{m^{2}}-frac{E_1}{n^{2}}=E_1(frac{1}{m^{2}}-frac{1}{n^{2}})\\Delta E = -21,76*10^{-19}J*(frac{1}{3^{2}}-frac{1}{2^{2}}) = -21,76*10^{-19}J*(frac{4}{36}-frac{9}{36})= \\=-21,76*10^{-19}J*(-frac{5}{36}) = 3*10^{-19} J[/latex] [latex]lambda = h*frac{c}{Delta E}\\lambda = 6,63*10^{-34}Js*frac{3*10^{8}frac{m}{s}}{3*10^{-19}J} = 6,63*10^{-7}m = 663 nm\\barwa czerwona, (630-780) nm[/latex]