(x-5)²-20<2x² x²-10x+25-20<2x² x²+10x-5>0 Δ=100+20=120 √Δ=√120=2√30 x1=(-10-2√30)/2 =(-5-√30) x2=(-10+2√30)2=-5+√30 x∈(-∞,-5-√30)u(-5+√30,∞) 2.[latex] left { {{x+2y=5} atop {x-2y=-3}} ight. [/latex] ------------------------------------------------------------ 2x=2 x=1 x+2y=5 1+2y=5 2y=4 y=2 [latex] left { {{y=2} atop {x=1}} ight. [/latex] 3.6²+15²=c² 36+225=c² c=√261 P=1/2*6*15=45cm² Ob=6+15+√261=21+√261
[latex]1)\\(x-5)^2 - 20<2x^2\\x^2-10x+25-20-2x^2<0\\-x^2-10x+5<0 / *(-1)\\ x^2+10x-5 >0 \\a>0 ramiona paraboli skierowane w gore[/latex] [latex]miejsca zerowe:\\ Delta =b^2-4ac =10^2 -4* 1*(-5)= 100+20=120 \ \sqrt{Delta }=sqrt{120}= sqrt{4*30}=2sqrt{30} \ \x_{1}=frac{-b- sqrt{Delta } }{2a}=frac{ -10-2sqrt{30}}{2 }=frac{2( -5-sqrt{30})}{2 }= -5-sqrt{30} \ \x_{2}=frac{-b+sqrt{Delta } }{2a}=frac{ -10+2sqrt{30}}{2 }=frac{2(sqrt{30}-5)}{2 }= sqrt{30}-5\\xin (-infty;-5-sqrt{30} )cup sqrt{30}-5;+infty )[/latex] [latex]2)\\ egin{cases}x+2y=5 \ x-2y= -3 end{cases}\+-------\2x=2 / :2\x=1\\x+2y=5\1+2y=5\2y=5-1\2y=4 / :2\y=2\\egin{cases} x=1\y=2 end{cases}\\zostosowana metoda przeciwnych wspolczynnikow[/latex] [latex]3)\\przyprostokatne: a= 6 cm, b=15 cm\przeciwprostokatna: c=?\\c^2=a^2+b^2\\c^2=6^2+15^2\\c^2=36+225\\c^2=261\\c=sqrt{261}=sqrt{9*29}=3sqrt{29} cm [/latex] [latex]pole:\\P=frac{1}{2}ab=frac{1}{2}*6*15=45 cm^2\\obwod:\\obw=a+b+c=6+15+3sqrt{29}=21+3sqrt{29}=3(7+sqrt{29}) cm[/latex]