w załączeniu rozwiązanie
Zad 1. [latex]log_{0,2} 0,3- log_{0,2}0,5- log_{0,2} 15=[/latex] [latex]log_0,2 frac{0,3}{0,5} - log_{0,2} 15=[/latex] [latex]log_0,2 left(frac{3}{5}:15 ight) =log_{ frac{1}{5} } left(frac{3}{5} cdot frac{1}{15} ight)=[/latex] [latex]log_{ frac{1}{5} }frac{1}{25}=log_{ frac{1}{5} } left(frac{1}{5} ight)^2=[/latex] [latex]2log_{ frac{1}{5} }frac{1}{5}=2[/latex] ============== Zad 2. [latex]log xy+ log frac{ z^{2} }{y} = log xyz- log frac{y}{z}[/latex] [latex]L=log xy+ log frac{ z^{2} }{y}=log xy+ log z^{2}-logy=[/latex] [latex]log xy+ 2log z-logy=log xy+ log z+logz-logy=[/latex] [latex]log xyz-(logy-logz)=log xyz- log frac{y}{z}=P[/latex] Zad 3. Dziedzina: [latex]x>0, y>0[/latex] [latex]frac{1}{3} log_{5} 8 x^{3} - 2 log_{5} y sqrt{x} + frac{1}{2}=[/latex] [latex]log_{5} (8 x^{3})^{ frac{1}{3} }- log_{5} (y sqrt{x})^2+ frac{1}{2}=[/latex] [latex]log_{5}2x- log_{5} y^2x+ frac{1}{2}log_55=[/latex] [latex]log_{5} frac{2x}{y^2x} +log_5 sqrt{5} =[/latex] [latex]log_{5} frac{2sqrt{5}}{y^2} [/latex]