f(x)=0 zał: 10x>0 x>0 [latex]|log_{ sqrt{6}}10x|-1=0 \ \ |log_{ sqrt{6}}10x|=1 \ \ 1. \ log_{ sqrt{6}}10x=1 \ \ log_{ sqrt{6}}10x=log_{ sqrt{6}} sqrt{6}^{1} \ \ 10x= sqrt{6} \ \ x_{1}= frac{ sqrt{6}}{10} \ \ \ 2.\ log_{ sqrt{6}}10x=-1 \ \ log_{ sqrt{6}}10x=log_{ sqrt{6}} sqrt{6}^{-1} \ \ 10x= (sqrt{6})^{-1} \ \ 10x= frac{1}{ sqrt{6}} \ \ x_{2}= frac{ 1}{10sqrt{6}}= frac{sqrt{6}}{60} \ \ [/latex] [latex]x_{1} + x_{2}= frac{sqrt{6}}{10}+ frac{sqrt{6}}{60}= frac{6sqrt{6}}{60}+ frac{sqrt{6}}{60}= \ \ = frac{7 sqrt{6} }{60} [/latex]
Skoro chodzi o miejsce zerowe, możemy napisać: [latex]0=|log_{sqrt6};10x|-1\\|log_{sqrt6};10x|=1\\log_{sqrt6};10x=1qquadveeqquad{}log_{sqrt6};10x=-1\\log_{sqrt6};10x_1=1qquadwedgeqquad{}log_{sqrt6};10x_2=-1\\(sqrt6)^1=10x_1qquadwedgeqquad{}(sqrt6)^{-1}=10x_2\\10x_1=sqrt6qquadwedgeqquad10x_2=frac{1}{sqrt6}=frac{sqrt6}{6}\\x_1=frac{sqrt6}{10}qquadwedgeqquad{}x_2=frac{sqrt6}{60}\\x_1+x_2=frac{sqrt6}{10}+frac{sqrt6}{60}=frac{6sqrt6}{60}+frac{sqrt6}{60}=frac{7sqrt6}{60}[/latex]