Przekroj osiowy stożka jest trojkatem prostokatnym o polu rownym 24.oblicz pole powierzchni calkowitej i objetosc stozka .

Przekroj osiowy stożka jest trojkatem prostokatnym o polu rownym 24.oblicz pole powierzchni calkowitej i objetosc stozka .
Odpowiedź

l - tworząca stożka d - średnica podstawy = l√2 P - pole przekroju = l²/2 = 24 l²/2 = 24 l² = 48 l = √48 = √(16 * 3) = 4√3 d = l√3 = 4√3 * √3 = 4 * 3 = 12 r - promień podstawy stożka = d/2 = 12/2 = 6 Pp - pole podstawy stożka = πr² = π * 6² = 36π Pb - pole powierzchni bocznej stożka = πrl = π * 6 * 4√3 = 24π√3 Pc - pole powierzchni całkowitej stożka = Pp + Pb = 36π + 24π√3 = = 12π(3 + 2√3) H - wysokość stożka = √(l² - r²) = √[(4√3)² - 6²] = √(48 - 36) = √12 = = √(4 * 3) = 2√3 V - objętość stożka = 1/3 * Pp * H = 1/3 * 36π * 2√3 = 12π * 2√3 = = 24π√3

Dodaj swoją odpowiedź