Jedynka trygonometryczna: [latex]sin ^{2} alpha + cos^{2} alpha =1[/latex] [latex]ctg alpha = frac{cos alpha }{sin alpha } [/latex] [latex]L= frac{sin alpha }{1+cos alpha } +ctg alpha =frac{sin alpha }{1+cos alpha }+ frac{cos alpha }{sin alpha } = \ \ frac{ sin^{2} alpha +cos alpha (1+cos alpha ) }{(1+cos alpha )sin alpha } = frac{ sin^{2} alpha +cos alpha + cos^{2} alpha }{(1+cos alpha )sin alpha } = \ \ frac{1+cos alpha }{(1+cos alpha )sin alpha } = frac{1}{sin alpha } =P[/latex]
Zad.1 Uzasadnij tożsamość : [latex]frac{1-2sin^{2}alpha}{sinalpha*cosalpha} = tgalpha - ctgalpha[/latex] Zadanie. 2 Oblicz a -b gdy [latex]a=sin^{4}alpha - cos^{4}alpha, b= 1 - 4sin^{2}alpha cos^{2}alpha [/latex] dla a=60 stopni.
Zad.1 Uzasadnij tożsamość : [latex]frac{1-2sin^{2}alpha}{sinalpha*cosalpha} = tgalpha - ctgalpha[/latex] Zadanie. 2 Oblicz a -b gdy [latex]a=sin^{4}alpha - cos^{4}alpha, b= 1 - 4sin^{2}alpha cos^{2}alpha [/latex] dla a=60 stopni. ...
Uzasadnij tożsamość: a) tg[latex]tg^{2}alpha- sin^{2}alpha=tg^{2}alpha cdot sin^{2}alpha[/latex] b) [latex]cosalpha cdot ctgalpha + sinalpha =frac{1}{sinalpha}[/latex]
Uzasadnij tożsamość: a) tg[latex]tg^{2}alpha- sin^{2}alpha=tg^{2}alpha cdot sin^{2}alpha[/latex] b) [latex]cosalpha cdot ctgalpha + sinalpha =frac{1}{sinalpha}[/latex]...