Zad. 1
[latex] x^{2} leq 10 pi -7[/latex]
[latex]x leq sqrt{10 pi -7} [/latex] ∧ [latex]x geq - sqrt{10 pi -7} [/latex]
[latex]x leq 4,94[/latex] ∧ [latex]x geq -4,94[/latex]
Odp: Najmniejsza liczba całkowita spełniająca te warunki to: -4
Zad. 2
[latex]x=0,(6)[/latex]
[latex]10x=6,(6)[/latex]
[latex]10x-x=6,(6)-0,(6)[/latex]
[latex]9x=6[/latex]
[latex]x= frac{6}{9} = frac{2}{3} [/latex]
[latex]y=4,(36)[/latex]
[latex]100y=436,(36)[/latex]
[latex]100y-y=436,(36)-4,(36)[/latex]
[latex]99y=432[/latex]
[latex]y= frac{432}{99} = frac{48}{11} [/latex]
[latex] frac{x}{y} = frac{ frac{2}{3} }{ frac{48}{11} } = frac{2}{3} * frac{11}{48} = frac{11}{72} [/latex]