Suma dwóch liczb jest równa 45. Jeżeli jedną z nich zwiększymy o 40%, a drugą zwiększymy o 20%, to ich suma będzie równa 57. Co to za liczby?

Suma dwóch liczb jest równa 45. Jeżeli jedną z nich zwiększymy o 40%, a drugą zwiększymy o 20%, to ich suma będzie równa 57. Co to za liczby?
Odpowiedź

x1+x2=45 => x1 = 45-x2 1.4x1+1.2x2 = 57 63 - 1.4x2 +1.2 x2 = 57 0.2 x2 = 6 x2 = 30 x1 = 45 - 30 = 15 x1=15 x2=30

x- pierwsza liczba y - druga liczba x+y = 45 / * 6 1,4x + 1,2y = 57 / * (-5) 6x + 6y = 270 -7x - 6 y =-285 -x =- 15 x = 15 x + y = 45 y = 45 - x y = 45 - 15 y= 30

x + y = 45 (x*140/100) + (y*120/100) = 57 y = 45 - x 7/5x + 6/5y = 57 y = 45 - x 7/5x + 6/5(45-x) = 57 y = 45 - x 7/5x + 54 - 6/5x = 57 y = 45 - x 1/5x = 3 y = 45 - x x = 15 y = 30 x = 15

Dodaj swoją odpowiedź