udowodnij tożsamość trygonometryczną:cos³α-cos α÷sin³α-sinα=tagα
udowodnij tożsamość trygonometryczną:cos³α-cos α÷sin³α-sinα=tagα
[cos³α-cosα]÷[sin³α-sinα]=tagα L = cos³α-cos α÷sin³α-sinα P = tagα L = [cos³α-cosα]÷[sin³α-sinα] = [cosα (cos²α - 1)] : [sinα (sin²α -1)] = [cosα (1 -sin²α - 1)] : [sinα (1 - cos²α - 1)] = [cosα*(-sin²α)] : [sinα*(-cos²α)] = [cosα*sin²α] : [sinα*cos²α] = [sinα] : [cosα] = sinα/cosα = tagα = P