Od skały wznoszącej się nad 50-metrową przepaścią oderwał się głaz o masie 10kg. Jaką energię kinetyczną miał spadający swobodnie głaz na wysokości 10m nad ziemią? (g=10m/s2

Od skały wznoszącej się nad 50-metrową przepaścią oderwał się głaz o masie 10kg. Jaką energię kinetyczną miał spadający swobodnie głaz na wysokości 10m nad ziemią? (g=10m/s2
Odpowiedź

1) m=10 kg 2) długość drogi spadania h=50-10=40 m 3) prędkość głazu na wysokości 10 m nad dnem przepaści v=sqrt(2*g*h), gdzie sqrt to pierwiastek kwadratowy 4) energia kinetyczna na wysokości 10 m nad dnem przepaści Ek=0,5*m*v^2, gdzie znaczek ^ oznacza podniesienie do potęgi Ek=0,5*m*(sqrt(2*g*h))^2=0,5*m*2*g*h=m*g*h=10*9,81*10=981 kg*m^2/s^2 = 981 J

Od skały wznoszącej się nad 50-metrową przepaścią oderwał się głaz o masie 10kg. Jaką energię kinetyczną miał spadający swobodnie głaz na wysokości 10m nad ziemią? (g=10m/s2 h=50m m=10kg Ekk=? (10m nad ziemią, czyli po spadku o 40m w dół) g=10m/s² s=10m Ekk-Ek końcowa Ekp-Ek początkowa Epp-Ep początkowa Epk-Ep końcowa=mgh Ek= mv²/2 Ep=mgh Zasada zachowania energii Epp+Ekp=Epk+Ekk mgh+0=mgs+Ekk Ekk=mgh-mgs Ekk=mg(h-s) Ekk=10kg*10m/s²(50m-10m) Ekk=100kgm/s²(40m) Ekk=2,5kgm²/s² Ekk=2,5J

Dodaj swoją odpowiedź