1) uzasadnij ze nie istnieją dwie liczby których suma jest równa 4 a ich iloczyn jest równy 5 2)suma kwadratów trzech kolejnych liczb całkowitych nieparzystych jest równa 156. Wyznacz te liczby

1) uzasadnij ze nie istnieją dwie liczby których suma jest równa 4 a ich iloczyn jest równy 5 2)suma kwadratów trzech kolejnych liczb całkowitych nieparzystych jest równa 156. Wyznacz te liczby
Odpowiedź

a) x+y=4 x*y=5, zatem x=5/y bierzemy te warunki w klamrę. podstawiamy: 5/y+y=4, mnożymy przez y 5+y²=4y y²-4y+5=0 Δ=-4, zatem brak rozwiązań Wniosek- nie istnieją takie liczby b) Na początek dodam, że suma powinna się równać 155, a nie 156, ponieważ takie liczby nie istnieją. x ∈ C x- pierwsza liczba nieparzysta x²+(x+2)²+(x+4)²=155 x²+x²+4x+4+x²+8x+16=155 3x²+12x-135=0, dzielimy przez 3 x²+4x-45=0 Δ=16+180=196 √Δ=14 x₁=-9 ∨ x₂=5 czyli te liczby to -9,-7,-5 bądź 5,7,9

Dodaj swoją odpowiedź