oblicz x gdy" a) log x = 0 b)log₂x=5 c)log₂ [log₂ (log₂x)] = 1 d) log₂x = log2 10 + log₂5 - log₂ 25

oblicz x gdy" a) log x = 0 b)log₂x=5 c)log₂ [log₂ (log₂x)] = 1 d) log₂x = log2 10 + log₂5 - log₂ 25
Odpowiedź

a) log x = 0 logx=log1 x=1 b)log₂x=5 log₂x=5log₂2 log₂x=log₂2⁵ x=32 c)log₂ [log₂ (log₂x)] = 1 log₂ [log₂ (log₂x)] =log₂2 log₂ (log₂x) =2 log₂ (log₂x)=2log₂2 log₂ (log₂x)=log₂2² log₂ (log₂x)=log₂4 log₂x=4 log₂x=4log₂2 log₂x=log₂2⁴ x=16 d) log₂x = log2 10 + log₂5 - log₂ 25 log₂x = log₂(10*5:25) log₂x = log₂2 x=2

a) log x = 0 x=10⁰ x=1 b)log₂x=5 x=2⁵ x=32 c)log₂ [log₂ (log₂x)] = 1 log₂ [log₂ (log₂x)]=log₂ 2 log₂ (log₂x)=2 log₂ (log₂x)=log₂4 log₂x=4 x=2⁴ x=16 d) log₂x = log₂ 10 + log₂5 - log₂ 25 log₂x=log₂(10*5:25) log₂x=log₂2 x=2

Dodaj swoją odpowiedź