niech p= log₂3, q=log₂5. Uzasadnij poniższą równość: a) log₂45 = 2p+q b) log₂75 = p + 2q c) log₂405 = 4p + q
niech p= log₂3, q=log₂5. Uzasadnij poniższą równość:
a) log₂45 = 2p+q
b) log₂75 = p + 2q
c) log₂405 = 4p + q
a) log₂45 = log₂9*5 = log₂3² + log₂5 = 2log₂3 + log₂5 = 2p+q b) log₂75 = log₂3*25 = log₂3 + log₂5² = log₂3 + 2log₂5 = p + 2q c) log₂405 = log₂81*5 = log₂3⁴ + log₂5 = 4log₂3 + log₂5 = 4p + q
a. log₂45 = 2log₂3 + log₂5 = 2p + q b. log₂75 = log₂3 + 2log₂5 = p + 2q c. log₂405 = 4log₂3 + log₂5 = 4p + q
log₂45=2log₂3+log₂5=2p+q log₂75=log₂3+2log₂5=p+2q log₂405=4log₂3+log₂5=4p+q