v*t = 24 (v+1/2)(t-1) = 24 t = 24/v tv - v + ½t - ½ = 24 t = 24/v 24/v * v - v + ½ * 24/v - ½ = 24 t = 24/v 24 - v + 12/v - ½ = 24 t = 24/v -v + 12/v = ½ t = 24/v 12/v = ½ + v t = 24/v 12 = 1½ v t = 24/v v = 6 t = 24/6 x = 6 t = 4 v = 6
v*t = 24 (v+1/2)(t-1) = 24 t = 24/v t*v - v + 1/2 t - 1/2 = 24 t = 24/v 24/v * v - v + 1/2 * 24/v - 1/2 = 24 t = 24/v 24 - v + 12/v - 1/2 - 24 = 0 t = 24/v -v + 12/v - 1/2 = 0 / * v t = 24/v -v² + 12 - 0,5v = 0 liczymy deltę: Δ = b² - 4*a*c = (-0,5)² - 4 * (-1) * 12 = 0,125 + 48 = 48,25 √Δ = 6, 94 v₁= -b -√Δ/ 2a = 0,5 - 6,94/ -2 = 3,22 v₂= -b + √Δ/ 2a = 0,5 + 6,94 = - 3,75 t ₁= 24/v₁ = 24/3,22 = 7,45 lub t ₂ = 24/v₂= 24/ -3,75= - 6,45 v₂i t₂nie spełniają warunków równania, więc liczba v = 3,22, a t = 7,45