parametr kondensatora
Podstawowymi parametrami kondensatora są pojemnosc znamionowa wraz z tolerancją oraz napięcie znamionowe i stratność dielektryczna (tangens kąta strat d). Do ważniejszych parametrów kondensatora zalicza się napięcie probiercze, dopuszczalne napięcie przemienne, rezystancję izolacji, temperaturowy współczynnik pojemności, kategorię klimatyczną i rozmiary. W niektórych zastosowaniach istotne znaczenie mają również takie parametry jak: temperaturowa stałość pojemności, moc znamionowa, częstotliwość maksymalna (graniczna), dopuszczalne obciążenie impulsowe itp. Pojemność znamionowa Cn kondensatora jest to wartość pojemności założona przy wytwarzaniu kondensatora, która z uwzględnieniem tolerancji podawana jest jako jego cecha. W określonych warunkach różnica między pojemnością rzeczywistą a znamionową kondensatora, tj. odchyłka pojemności, nie może być większa niż wartość wynikająca z tolerancji. Wartości pojemności znamionowej tworzą ciągi liczb, które oznacza się symbolami E3, E6, El 2, E24 itd. Napięcie znamionowe Un kondensatora jest to wartość napięcia stałego (dla niektórych kondensatorów wartość napięcia przemiennego o ściśle określonej częstotliwości, zwykle 50 Hz), które może być długotrwale doprowadzone do kondensatora nie powodując jego zniszczenia ani jakiejkolwiek trwałej zmiany jego parametrów. Wartości napięcia znamionowego są znormalizowane, są to więc np. wartości 25V, 63V, 100V, 160V, 250V itd. Przez określony czas (zwykle l minutę) kondensator powinien także bez żadnej szkody wytrzymać napięcie o większej wartości, nazywane napięciem probierczym równym, w zależności od typu kondensatora, 1,4-2,5 Un. Wartość obu tych napięć zależy również od warunków pracy kondensatora, tj. rodzaju doprowadzonego napięcia (stałe, przemienne, impulsowe) oraz temperatury otoczenia, przy czym zmniejsza się ona ze wzrostem zarówno częstotliwości jak i temperatury. Jeżeli do kondensatora jest doprowadzone napięcie zmienne, to w pierwszym przybliżeniu można przyjąć warunek, aby suma składowej stałej i składowej przemiennej nie przekraczała wartości napięcia znamionowego określonego dla przebiegu prądu stałego (zalecenia szczegółowe dla danego kondensatora są podawane w warunkach technicznych.) Straty energii w kondensatorze przy napięciu przemiennym charakteryzuje tangens kata strat tg d (niekiedy podaje się dobroć Q kondensatora, przy czym Q= l /tg d). Straty kondensatora są zazwyczaj większe niż straty samego dielektryka ze względu na występowanie również strat w elektrodach i doprowadzeniach. Wartość strat zależy od częstotliwości i temperatury, przy czym przebieg tej zależności jest złożoną funkcją polaryzacji dielektryka oraz rezystancji kondensatora. W katalogach wartość tg d podaje się dla ściśle określonej częstotliwości pomiarowej, zwykle l kHz lub l MHz (dla kondensatorów elektrolitycznych — 100 Hz). Kondensator dla prądu stałego stanowi element charakteryzujący się pewną rezystancją nazywaną rezystancją izolacji, która zależy przede wszystkim od rodzaju dielektryka, a także konstrukcji i pojemności kondensatora. Dla kondensatorów stałych o niezbyt dużej pojemności (Cn < 0,1 mF) znaczący wpływ na rezystancję izolacji ma materiał obudowy (sposób izolacji). W kondensatorach o większej pojemności (Cn > 0,1 mF), ze względu na coraz silniej uwidaczniającą się zależność od Cn (rozmiary dielektryka), bardziej reprezentatywnym parametrem jest iloczyn rezystancji izolacji i pojemności, określający tzw. stałą czasową kondensatora t. Szczególnie duże wartości rezystancji izolacji ( 100GW) oraz t (l 0000 s) mają kondensatory polistyrenowe i polipropylenowe. Dla kondensatorów elektrolitycznych zamiast wartości rezystancji izolacji podaje się wartość tzw. prądu upływu Iu Właściwości kondensatorów zależą również od temperatury, dlatego istotne znaczenie ma określenie przedziału dopuszczalnych zmian temperatury, czyli tzw. znamionowego zakresu temperatury pracy, w którym kondensator może pracować w sposób ciągły. Graniczne wartości czynników narażeniowych (klimatycznych i mechanicznych), przy których kondensator powinien spełniać wymagania ustalone normą określa kategoria klimatyczna. Na szczególną uwagę zasługuje temperaturowy współczynnik pojemności, wyrażający względną zmianę pojemności wywołana jednostkowym przyrostem (zmianą) temperatury równy DC/CDT. Współczynnik ten może mieć wartość dodatnią, ujemną lub nawet równą zeru w zależności od typu kondensatora (rodzaju dielektryka) i rozpatrywanego zakresu temperatur. Najczęściej TWP podaje się jako wartość średnia w znamionowym przedziale temperatur pracy kondensatora. Kondensator, przy przepływie prądu zmiennego, stanowi opór zależny od częstotliwości, który jest nazywany reaktancja pojemnościową (Xc).
W celu obliczenia pojemności kondensatora, korzystamy z następującej zależności: C = E x A/d gdzie: C - pojemność w faradach, A - powierzchnia w m2, d - odstęp miedzy elektrodami w m, E - przenikalność, która właściwie jest iloczynem Eo x Er