LEK (na nudę), czyli Letni Edukacyjny Konkurs. poziom: GIMNAZJUM 43. Układy równań cz. 2. Informacje dla potencjalnie rozwiązującego gimnazjalisty: Czasami, gdy mamy układ równań, to aby go rozwiązać można również mnożyć stronami. Oto przykład: [la

LEK (na nudę), czyli Letni Edukacyjny Konkurs. poziom: GIMNAZJUM 43. Układy równań cz. 2. Informacje dla potencjalnie rozwiązującego gimnazjalisty: Czasami, gdy mamy układ równań, to aby go rozwiązać można również mnożyć stronami. Oto przykład: [latex]cdot egin{cases}xy=2 \ yz=3 \ zx=6end{cases} \ overline{xy cdot yz cdot zx = 2 cdot 3 cdot 6} \ x^2y^2z^2=36 \ (xyz)^2=36 qquad /sqrt{} \ xyz=6 qquad hbox{lub} qquad xyz=-6[/latex] Rozpatrzę tylko przypadek, gdy xyz=6. Dla xyz=-6 robi się analogiczne. Zauważamy na przykład, że: [latex]x=dfrac{xyz}{yz}=dfrac{6}{3}=2[/latex] Wystarczyło podstawić xyz=6 oraz yz=3 i już mamy obliczonego iksa. Dokładnie tak samo postępuje się z igrekiem oraz zetem. Spróbujcie wobec tego rozwiązać: [latex]egin{cases} xyz=18t^2 \ 3tyz=2x^2 \ 4txz=9y^2 \ 3txy=16z^2end{cases}[/latex] Proszę gimnazjalistów śmiało rozwiązywać i próbować! W przypadku sensownej odpowiedzi, podam w komentarzu wskazówki, jeżeli odpowiedź będzie nie do końca poprawna. ---- Ilość punktów za rozwiązanie jest niewielka (aby nie kusić spamerów i trolli), ale informuję, że najlepsza odpowiedź, którą wybierze Kapituła LEKu otrzyma dodatkową ilość punktów.
Odpowiedź

[latex]egin {cases}xyz=18t^2\3tyz=2x^2\4txz=9y^2\3txy=16z^2end [/latex] [latex]xyz*3tyz*4txz*3txy=18t^2*2x^2*9y^2*16z^2\ 36x^3y^3z^3t^3=5184x^2y^2z^2t^2\ (xyzt)^3=144(xyzt)^2\ xyzt=144vee xyzt=0\ x= frac{xyzt}{tyz}= frac{144}{ frac{2}{3} x^2} = frac{216}{x^2}vee frac{0}{x^2} \ x^3=216vee x^3=0\ x=6 vee x=0\ y= frac{xyzt}{txz} = frac{144}{ frac{9}{4} y^2} = frac{64}{y^2} vee frac{0}{y^2} \ y^3=64vee y^3=0\ y=4vee y=0\ z= frac{xyzt}{txy} = frac{144}{ frac{16}{3}z^2 }= frac{27}{z^2}vee frac{0}{z^2}\ z^3=27vee z^3=0\ z=3vee z=0\[/latex]  [latex]t= frac{xyzt}{xyz} = frac{144}{18t^2} = frac{8}{t^2}vee frac{0}{t^2} \ t^3=8 vee t^3=0 \ t=2vee t=0[/latex]

[latex]egin{cases} xyz=18t^{2} \ 3tyz=2x^{2} \ 4txz=9y^{2} \ 3txy=16z^{2} end{cases}[/latex] Mnożymy wszystkie równania [latex]xyz*3tyz*4txz*3txy=18t^{2}*2x^{2}*9y^{2}*16z^{2} \ \ 36x^{3}y^{3}z^{3}t^{3}=5184x^{2}y^{2}z^{2}t^{2} \ \ (xyzt)^{3}=144(xyzt)^{2}[/latex] Wprowadźmy zmienną pomocniczą [latex]a=xyzt \ \ (xyzt)^{3}-144(xyzt)^{2}=0 \ \ a^{3}-144a^{2}=0 \ \ a^{2}(a-144)=0 \ \ a=0 vee a=144 \ \ xyzt=0 vee xyzt=144[/latex] Wyliczamy "t" [latex]t= frac{xyzt}{xyz} \ \ t= frac{0}{18t^{2}} vee t= frac{144}{18t^{2}} \ \ 18t^{3}=0 vee 18t^{3}=144 \ \ t=0 vee t^{3}=8 \ \ t=0 vee t=2[/latex] Wyliczamy "x" [latex]x= frac{3xyzt}{3tyz} \ \ x= frac{0}{2x^{2}} vee x= frac{432}{2x^{2}} \ \ 2x^{3}=0 vee 2x^{3}=432 \ \ x=0 vee x^{3}=216 \ \ x=0 vee x=6[/latex] Wyliczamy "y" [latex]y= frac{4xyzt}{4txz} \ \ y= frac{0}{9y^{2}} vee y= frac{576}{9y^{2}} \ \ 9y^{3}=0 vee 9y^{3}=576 \ \ y=0 vee y^{3}=64 \ \ y=0 vee y=4[/latex] Wyliczamy "z" [latex]z= frac{3xyzt}{3txz} \ \ z= frac{0}{16z^{2}} vee z= frac{432}{16z^{2}} \ \ 16z^{3}=0 vee 16z^{3}=432 \ \ z=0 vee z^{3}=27 \ \ z=0 vee z=3[/latex] Odp. [latex]oxed{x=0 wedge y=0 wedge z=0 wedge t=0 } vee \ \ oxed{x=6 wedge y=4 wedge z=3 wedge t=2 }[/latex]

Dodaj swoją odpowiedź