wyznacz miejsce zerowe funkcji: d)f(x)=|2x|-4 e)f(x)=(x-1)√x f)f(x)=√x-1 (-1 takze pod pierwiastkiem) g)f(x)=(x+2)(x-3) h)f(x)=(x+4) x-2 (pod pierwiastkiem x-2) i)f(x)=|x-2|-4

wyznacz miejsce zerowe funkcji: d)f(x)=|2x|-4 e)f(x)=(x-1)√x f)f(x)=√x-1 (-1 takze pod pierwiastkiem) g)f(x)=(x+2)(x-3) h)f(x)=(x+4) x-2 (pod pierwiastkiem x-2) i)f(x)=|x-2|-4
Odpowiedź

d) f(x) = |2x| - 4 |2x| - 4 = 0 -2x - 4 = 0, x < 0 ∨ 2x - 4 = 0 , x ≥ 0 -2x = 4 2x = 4 x = -2 x = 2 x∈D. x∈D Odpowiedź: Miejsca zerowe funkcji to 2 i -2 e) (x-1)√x = 0 To równanie będzie równe 0, gdy jeden z czynników będzie równy 0, więc: x - 1 = 0 ∨ √x = 0 x = 1 x = 0 Odpowiedź: Miejsca zerowe funkcji to 1 i 0 f) √ x - 1 = 0 x - 1 = 0 x = 1 Odpowiedź: Miejscem zerowym funkcji jest 1 g) f(x) = (x+2)(x-3) => (x+2)(x-3) = 0 x + 2 = 0 i x - 3 = 0 x = -2 i x = 3 Odpowiedź: Miejsca zerowe funkcji to -2 i 3. h) (x+4)(√x-2) = 0 x + 4 = 0 i x - 2 = 0 x = -4 i x = 2 Odpowiedź: Miejsca zerowe funkcji to -4 i 2. i) |x-2|-4 = 0 oraz -x + 2 - 4 = 0 x - 2 - 4 = 0 Dziedzina: x < 2 Dziedzina: x ≥ 2 -x - 2 = 0 x - 6 = 0 -x = 2 x = 6 x = -2 x∈ D x∈D Odpowiedź: Miejsca zerowe funkcji to 6 i -2

Dodaj swoją odpowiedź