50 pkt!!!!!!!!!!!!!! Dam naj Środki ścian sześcianu są wierzchołkami pewnego wielościanu. Oblicz stosunek objętości sześcianu do objętości powstałej bryły.

50 pkt!!!!!!!!!!!!!! Dam naj Środki ścian sześcianu są wierzchołkami pewnego wielościanu. Oblicz stosunek objętości sześcianu do objętości powstałej bryły.
Odpowiedź

Powstała bryła to ośmiościan foremny o długości krawędzi b. Mamy (a/2)² + (a/2)² = b² a²/4 + a²/4 = b² b² = a²/2 a - długość krawędzi sześcianu Vsz = a³ Vo = 2* (1/3) *b² *h gdzie h = a/2 zatem mamy Vo =( 2/3) *(a²/2) *(a/2) = (2/3)*(a³/4) = (2a³)/12 = a²/6 Mamy zatem Vsz : Vo = a³ : (a³/6 ) = 6 Odp. Ten stosunek równa się 6. Dodam jeszcze rysunek.

x=dlugosc boku szescianu y=dlugosc boku osmioscianu Środki ścian sześcianu wyznaczają ośmiościan foremny. długosc krawedzi ośmiościanu foremnego liczymy z twierdzenia pitagorasa. y²=(0,5x)²+(0,5x)²=0,25x²+0,25x²=0,5x² y=(√5/√10)*x wzor na objetosc osmioscianu: P=(√2/3) * y³= =(√2/3) * (√5/√10)*x*(√5/√10)*x*(√5/√10)*x=(√250x³/3√1000)=15,81x³/94,87≈0,166x³ √250≈15,81x³ 3√1000≈94,87 objetosc szescianu=x³ stosunek objetosci= 0,166x³ / x³ = 0,166 = 166 / 1000 = 1:6 , bo 6* 0,166 =1

Dodaj swoją odpowiedź