{a}/{b} ---> ułamek a przez b x^3 ----> x do potęgi 3 a) {x}/{x-4} : {x²-16} = {x}/{x-4} * {1}/{x²-16} = {x}/{(x-4)(x²-16)} = = {x}/{x^3 - 4x² - 16x + 64} b) {x+1}/{x-1} : {x²+x}/{3x-3} = {x+1}/{x-1} * {3x-3}/{x²+x} = = {x+1}/{x-1} * {3(x-1)}/{x(x+1)} = {3}/{x} c) {4}/{x+2} + {3}/{x-1} = {4(x-1)+3(x+2)}/{(x+2)(x-1)} = = {4x-4+3x+6}/{(x+2)(x-1)} = {7x+2}/{(x+2)(x-1)} d) {1}/{x²}+ 2x+1 - {3x}/{x+1} = {1(x+1)+(2x+1)x²(x+1)-3x(x²)}/{x²(x+1)} = = {x+1+(2x^3 +x²)(x+1)-3x^3}/{x²(x+1)} = {x+1+2x^4 +3x^3 +x²-3x^3}/{x²(x+1)} = {2x^4 +x² +x+1}/{x²(x+1)}
a) x/x-4 : x²-16 x/x-4 : (x-4)(x+4) // Skracamy (x-4) x/(x +4) b) x+1/x-1 : x²+x/3x-3 x+1/x-1 : x(x+1)/3(x-1) x+1/x-1 * 3(x-1)/x(x+1) 1 * 3/x 3/x c) 4/x+2 + 3/x-1 4/x+2 *1 + 3/x-1 *1 4 (x-1)/ (x+2)(x-1) + 3(x+2)/(x+2)(x-1) 4x-4/(x²+x-2) +3x+6/(x²+x-2) 4x-4+3x+6/(x²+x-2) 7x +2/(x²+x-2) d) 1/x²+ 2x+1 - 3x/x+1 (x+1)/(x³+x²) + (2x+1)(x³+x²)/(x³+x²)-3x *x²/(x³+x²) (x+1)/x³+x² + 2x⁴+2x³+x³+x²/x³+x² - 3x³/x³+x² x+1/x³+x² +2x⁴+3x³+x²/x³+x² - 3x³/x³+x² x+1 +2x⁴+3x³ +x² -3x³/x³+x² 2x⁴+x² +x +2/(x³+x²)