(2x - 6)² ≤ 4x - 13 4x²-24x+36 ≤ 4x-13 4x²-24x-4x ≤ -13-36 4x² -28x ≤ -49 x²-7x ≤ -12,25 -x² + 5 ≤ 0 -x² ≤ -5 x² ≤ 5 x ≤ √5 (2x + 6x² + 1) - (2x³ - x² + 3x - 2) = 2x+6x²+1-2x³+x²-3x+2=-x+7x²+3-2x³ (x⁴ + 4x² - 3)(-3x² + x)=-3x⁶-12x⁴+9x²+x⁵+4x³-3x (-x + 1)(3 - x²) - (x² + 2)(x + 3)=-3x+x³+3-x²-x³-3x-2x-6=-8x-3-x²
1. a) (2x - 6)² ≤ 4x - 13 4x² - 24x + 36 ≤ 4x - 13 4x² - 28x ≤ -49 / : 4 x²-7x ≤ -12,25 b) -x² + 5 ≤ 0 -x² ≤ -5 x² ≥ 5 x ≥ √5 2. a) (2x + 6x² + 1) - (2x³ - x² + 3x - 2) = 2x + 6x² + 1 - 2x³ + x² - 3x +2 = -2x³ + 7x² - x + 3 b) (x⁴ + 4x² - 3)(-3x² + x) = -3x⁶ + x⁵ - 12x⁴ + 4x³ + 9x² - 3x = x(-3x⁵ + x⁴ - 12x³ + 4x² + 9x - 3) c) (-x + 1)(3 - x²) - (x² + 2)(x + 3) = -3x + x³ + 3 - x² - x³ - 3x² - 2x - 6 = -4x² - 5x - 3