Odcinek AB jest średnicą okręgu o środku S. Na okręgu tym wybieramy punkt D taki, że kąt DSA ma miarę 110. Przez punkty A i D prowadzimy syczne do okręgu, przecinające sie w punkcie C. Oblicz miary kątów czworokąta o wierzchołkach A,B,C i D.

Odcinek AB jest średnicą okręgu o środku S. Na okręgu tym wybieramy punkt D taki, że kąt DSA ma miarę 110. Przez punkty A i D prowadzimy syczne do okręgu, przecinające sie w punkcie C. Oblicz miary kątów czworokąta o wierzchołkach A,B,C i D.
Odpowiedź

Wykonuję rysunek według twojego opisu. Kąt DSA i kąt DSB to kąty przyległe, więc DSB ma miarę 180-110 = 70 stopni. Kąt przy wierzchołku A ma miarę 90 stopni (styczna do okręgu). Odcinki DS i BS są równej długości (promienie okręgu). Mamy tam trójkąt równoramienny, więc miara kąta przy wierzchołku D albo też B wynosi: 180 - 70 = 110 110 : 2 = 55 stopni Suma miar kątów w czworokącie wynosi 360 stopni, więc wyliczenia dla kąta przy wierzchołku C: 360 - (90 + 55 + 55 + 90) = 360 - 290 = 70 stopni MIARY KĄTÓW W CZWOROKĄCIE: przy wierzch. A - 90 przy wierzch. B - 55 przy wierzch. C - 70 przy wierzch. D - 90 + 55 = 145

Dodaj swoją odpowiedź