Proszę o rozwiązanie Liczby(2,x,8) tworzą ciag geometryczny, który nie jest monotoniczny.Wówczas a)x=4 b)x=-4 c)x=4 lub x=-4 d)x=5 Z góry dzięki

Proszę o rozwiązanie Liczby(2,x,8) tworzą ciag geometryczny, który nie jest monotoniczny.Wówczas a)x=4 b)x=-4 c)x=4 lub x=-4 d)x=5 Z góry dzięki
Odpowiedź

Liczby(2,x,8) tworzą ciąg geometryczny, który nie jest monotoniczny. "Jeśli iloraz q jest ujemny, to ciąg geometryczny nie jest monotoniczny (jest naprzemienny)" a₁ = 2, a₂ = x, a₃ = 8 i q < 0 q = a₂/a₁ q = a₃/a₂ stąd x/2 = 8/x x² = 16 x₁ = √16 = 4 i x₂ = - √16 = - 4 x₁ = 4 → q = 4/2 = 2 > 0 (odrzucamy to rozwiązanie, bo zał. q < 0) x₂ = - 4 → q = -4/2 = - 2 < 0 Odp. Dla x = - 4 ciąg nie jest monotoniczny, czyli odp. b)

Dodaj swoją odpowiedź