R²= c²+ (R/cosβ - b)² R²*cos²β = c²*cos²β + R² - 2Rb*cosβ + b²*cos²β R²(cos²β - 1) + 2Rb*cosβ - (a² + b²)cos²β = 0 R²sin²β + 2Rb*cosβ - (c² + b²)cos²β = 0 Δ = 4b²cos²β + 4(c² + b²)cos²β*sin²β = 4cos²β(b² + (c² + b²)sin²β) Δ ≥ 0 R = (- 2b*cosβ ± 2cosβ√(b² + (c² + b²)sin²β))/(2sin²β) = cosβ(- b ± √(b² + (c² + b²)sin²β))/(sin²β) jak masz pytania to pisz na pw
R("2")=c("2")+(R/cosβ-b)("2") R("2")x(razy)cos("2")β=c²*cos("2")β+R("2")-2Rb*cosβ+ b("2")x(razy)cos("2")β R("2")(cos("2")β-1)+2Rbx(razy)cosβ-(a("2")+b("2"))cos("2")β=0 R("2")sin("2")β+2Rbx(razy)cosβ-(c("2")+b("2"))cos("2")β=0 /_=4b("2")cos("2")β+4(c("2")+b("2"))cos("2")βx(razy)sin("2")β= 4cos("2")β(b("2")+(c("2")+b("2"))sin("2")β) /_ >_ 0 R=(-2bx(razy)cosβ±2cosβ√(b("2")+ (c("2")+b("2"))sin("2")β))/(2sin("2")β)=cosβ(-b±√(b("2")+ (c("2")+ b("2"))sin("2")β))/(sin("2")β)