1. Oblicz granicę ciągu (proszę o obliczenia): an=(1-1/4)*(1-1/9)*(1-1/16)*.....*(1-1/(n+1)^2)

1. Oblicz granicę ciągu (proszę o obliczenia): an=(1-1/4)*(1-1/9)*(1-1/16)*.....*(1-1/(n+1)^2)
Odpowiedź

przekształcimy dany wzór korzystając ze wzoru skróconego mnożenia na różnicę kwadratów an = [1² - (1/4)²][1² - (1/3)²][1² - (1/4)²]..... [1² - (1/n)²][1 - (1/(n + 1))²] = [(1 - 1/2)(1 + 1/2)][(1 - 1/3)(1 + 1/3)][(1 - 1/4)(1 + 1/4)]²..... [(1 - 1/n)(1 + 1/n)][(1 - 1/(n + 1))(1 + 1/(n + 1))] = [1/2 * 3/2][2/3 * 4/3][3/4 * 5/4]..... [(n - 1)/n * (n + 1)/n][n/(n + 1) * (n + 2)/(n + 1)] = 1/2 * (n + 2)/(n + 1) = (n + 2)/2(n + 1) czyli ostatecznie: an = (n + 2)/2(n + 1) teraz możemy prosto policzyć granicę: lim an = lim (n + 2)/2(n + 1) = lim (1 + 2/n)/2(1 + 1/n) = 1/2 jak masz pytania to pisz na pw

Dodaj swoją odpowiedź