w trójkącie ostrokątnym poprowadzono dwie proste równoległe do podstawy ,które podzieliły wysokośc trójkata opuszczona na tę podstawę na trzy odcinki równej długości. oblicz stosunek pól powstałych w wyniku tego podziału figur. proszę o pomoc :)

w trójkącie ostrokątnym poprowadzono dwie proste równoległe do podstawy ,które podzieliły wysokośc trójkata opuszczona na tę podstawę na trzy odcinki równej długości. oblicz stosunek pól powstałych w wyniku tego podziału figur. proszę o pomoc :)
Odpowiedź

poprowadź pionowe proste w każdym punkcie przecięcia się twoich prostych równoległych z twoim trójkątem a zobaczysz że;powstałe figury mają podstawy o długościach równych: a, 2/3a, oraz: 1/3a obliczam pole pierwszej figury(tej dolnej,największej) f1: f1=(1/2a x h) - (1/2 x 2/3a x 2/3h) (w pierwszym nawiasie: pole całego trójkąta)-(w drugim nawiasie: pole dwóch mniejszych figur tworzących średniej wielkości trójkąt o podstawie =2/3a i wys. =2/3h) i dalej mamy: f1=(1-2/3 x 2/3)(1/2a x 2/3h)=(1- 4/9)(1/2ah) = 5/9(1/2ah) pole drugiej figury f2: f2=(1/2 x 2/3a x 2/3h)-(1/2 x 1/3a x 1/3h) (w pierwszym nawiasie: pole dwóch mniejszych figur tworzących średniej wielkości trójkąt o podstawie =2/3a i wys. =2/3h)-(w drugim nawiasie:najmniejszy,górny trójkąt o podstawie 1/3a i wys.1/3h) kontynuując: f2 = ((2/3 x 2/3)-(1/3 x1/3)) x (1/2ah) = 1/3(1/2ah) pole trzeciej figury,która jest trójkątem o podstawie 1/3a i wys.1/3h f3 = 1/2 x 1/3a x 1/3h =1/9(1/2ah) i rozwiązanie gotowe. zważywszy że pole p całego trójkąta wynosi 1/2ah mamy: f1= 5/9p f2=3/9p f3=1/9p

Dodaj swoją odpowiedź