a - dłuższy bok prostokąta b - krótszy przekątna d = 5+5+5 = 15 d = 15 cm przekątna z 3 odcinków 5+5+5 odcinek, który jest sumą dwóch pierwszych odcinków przekątnej oznaczę jako x x = 5+5 x = 10 rozpatruję tr. prostokątny o bokach a, x oraz ramię trójkąta z z tw. Pitagorasa a² = x² +z² a² = 10²+z² "mały" trójkąt prostokątny: b² = 5²+z² trójkąt prostokątny z przekątną prostokąta: d² = a²+b² a²+b² = 15² układ 3 równań: a²+b² = 15² a² = 10²+z² b² = 5²+z² a²+b² = 225 a² = z²+100 b² = 25+z² a² = 225-b² 225-b² = z²+100 b² = 25+z² a² = 225-b² 225-(25+z²) = z²+100 b² = 25+z² a² = 225-b² 225-25-z² = z²+100 b² = 25+z² a² = 225-b² -2z² = 100-200 b² = 25+z² a² = 225-b² -2z² = -100 |:(-2) b² = 25+z² a² = 225-b² z² = 50 b² = 25+50 a² = 225-b² z² = 50 b² = 75 a² = 225-75 z² = 50 b² = 75 a² = 150 z² = 50 b² = 75 a = √150 = 5√6 z = √50 = 5√2 b = √75 = 5√3 P = a*b P = 5√6*5√3 P = 25*√18 = 25*3√2 P = 75√2
oblicz pole prostokąta.
dane z rysunku w załączniku
ps. prostokąt podzielony przekątnac na ktorej sa oparte ramiona trojkata.
zaznaczony jest kat 90 stopni.
Odpowiedź
Dodaj swoją odpowiedź