Przekształcanie równań opiera się na banalnym stwierdzeniu zawartym w tytule tego akapitu. Powiedzmy, że chcemy rozwiązać równanie 2x − 1 = 3 . Robimy to tak: skoro 2x − 1 jest równe 3 , to jeżeli wykonamy jakąkolwiek operację algebraiczną na obu tych liczbach na raz, to nadal będą równe. Z tego właśnie powodu możemy do tej równości dodać, co tylko chcemy, możemy ją pomnożyć przez co tylko chcemy, możemy ją podnieść do kwadratu, możemy zlogarytmować (jeżeli są dodatnie) itd. Skoro wystartowaliśmy od liczb, które są równe, po każdej takiej operacji będziemy mieć liczby równe. I to jest dokładnie przekształcanie równań. w przypadku nierówności sprawa jest jeszcze poważniejsza. Powód jest taki, że w przypadku równań zwykle rozwiązanie składa się tylko z kilku wartości, i nawet jak nie jesteśmy pewni czy wszystkie strzałki w naszych przekształceniach można odwrócić, to ostatecznie zawsze możemy posprawdzać otrzymane rozwiązania (podstawiając je do wyjściowego równania). W przypadku nierówności sprawa się komplikuje, bo na ogół rozwiązaniem jest zbiór, który ma nieskończenie wiele elementów, więc sprawdzanie metodą podstawiania nie wchodzi w rachubę.
(x-4)(x-1)(5-x)(6+x)<0 x²-x-4x+4+5x+x+30+5x-6x x²-5x+4+6x+30+5x-6x x²+34<0/-34 x²>-34 x-1+x+1 ₋₋₋₋₋₋₋₋₋₋₋₋ = 0/-5x x-2 x-3 x=0 Dalszych niepotrafie