W równoległoboku sinus kąta ostrego jest równy ⅔, a wysokość opuszczona na dłuższy bok ma długość 8 cm. Oblicz obwód tego równoległoboku wiedząc, że jeden z boków stanowi ¾ drugiego boku.

W równoległoboku sinus kąta ostrego jest równy ⅔, a wysokość opuszczona na dłuższy bok ma długość 8 cm. Oblicz obwód tego równoległoboku wiedząc, że jeden z boków stanowi ¾ drugiego boku.
Odpowiedź

W równoległoboku sinus kąta ostrego jest równy ⅔, a wysokość opuszczona na dłuższy bok ma długość 8 cm. Oblicz obwód tego równoległoboku wiedząc, że jeden z boków stanowi ¾ drugiego boku.   α=⅔ h=8 a-I bok dłuższy b-II bok b=¾a   sinα=h/b ⅔=8/b 2b=24 b=12 12=¾a/*4 48=3a/:3 a=16   Ob=2a +2b Ob=2*16+2*12=32+24=56cm

Dodaj swoją odpowiedź