Zaznacz równanie, które ma nieskończenie wiele rozwiazań ( prosze opisac kazde): A.x(x-1)=2-(x-2)(x+1) B.x(x+1)=2+(x-2)(x+1) C.x(x-1)=(x-2)(x+1) D.x(x-1)=2+(x-2)(x+1)

Zaznacz równanie, które ma nieskończenie wiele rozwiazań ( prosze opisac kazde): A.x(x-1)=2-(x-2)(x+1) B.x(x+1)=2+(x-2)(x+1) C.x(x-1)=(x-2)(x+1) D.x(x-1)=2+(x-2)(x+1)
Odpowiedź

a)x²-x=2-x²-x+2x+2 x²-x+x²+x-2x=4 2x²-2x-4=0 to równanie ma 2 rozwiązania b).x(x+1)=2+(x-2)(x+1) x²+x=2+x²+x-2x-2 x²+x-x²-x+2x=0 2x=0 x=0 to równanie ma jedno rozwiązanie c)x(x-1)=(x-2)(x+1) x²-x=x²+x-2x-2 x²-x-x²-x+2x=-2 0=-2 to równanie jest sprzeczne d)x(x-1)=2+(x-2)(x+1) x²-x=2+x²+x-2x-2 x²-x-x²-x+2x=0 0=0 to równanie ma nieskończenie wiele rozwiązań

A.(x+1)(x-2)+(x+2)(x-1)= x√²-2x+x-2+ x√²-x+2x-2 C.(x-2)(x-1)= x^2-2x-x+2=x^2-3x+2 x=192 = √2-3x+2=36864-576+2=36290

Zaznacz równanie, które ma nieskończenie wiele rozwiazań ( prosze opisac kazde): A.x(x-1)=2-(x-2)(x+1) x² -x = 2 - (x²-x -2) x² -x = 2 -x² +x +2 x² -x -4 +x² -x =0 2x² -2x -4 = 0 /:2 x² -x -2 = 0 Δ = (-1)² -4*1*(-2) = 1 + 8 = 9 √Δ=√9 = 3 x1 = (1 -3): 2*1 = (-2) : 2 = -1 x2 = (1 +3) : 2*1 = 4 : 2 = 2 B.x(x+1)=2+(x-2)(x+1) x² +x = 2 + ( x²-x -2) x² +x = 2 + x² -x -2 x² +x = x² -x x² +x -x² +x = 0 2x = 0 x = 0 C.x(x-1)=(x-2)(x+1) x² -x = x² -x -2 x² -x -x² +x +2 = 0 2 = 0 sprzeczne D.x(x-1)=2+(x-2)(x+1) x² -x = 2 + x² -x -2 x² -x = x² -x x² -x -x² +x = 0 0 = 0 ( nieskończenie wiele rozwiązań)

Dodaj swoją odpowiedź