Oblicz wartość wyrażenia sin(alfa) + cos(alfa), gdy sin(alfa) * cos(alfa)=3/2 i stopni

Oblicz wartość wyrażenia sin(alfa) + cos(alfa), gdy sin(alfa) * cos(alfa)=3/2 i stopni
Odpowiedź

Dane: sinα*cosα = 1,5 α ∈ (0, ½π) - I ćwiartka układu współrzędnych czyli: sinα > 0, cosα > 0, tgα >0, ctgα > 0. sinα + cosα = ? (sinα + cosα)² = sin²α + 2sinα*cosα + cos²α (sinα + cosα)² = 1 + 2sinα*cosα (sinα + cosα)² = 1 + 2*1,5 (sinα + cosα)² = 1 + 3 (sinα + cosα)² = 4 (sinα + cosα) = √4 sinα + cosα = 2

Dodaj swoją odpowiedź