zadanie 1 a) [latex]2^{x - 1} = 4 = 2^2\ x - 1 = 2\ x = 3[/latex] b) [latex]left(frac{1}{5} ight)^{- x + 2} = 25\ 5^{x - 2} = 5^2\ x - 2 = 2\ x = 4[/latex] c) [latex]3^x = left(frac{1}{3} ight)^{2 - x}\ 3^x = 3^{x - 2}\ x = x - 2\ 0 = - 3[/latex] brak rozwiązań, równanie sprzeczne d) [latex]3^{x^2 - 7x + 8} = 9 = 3^2\ x^2 - 7x + 8 = 2\ x^2 - 7x + 6 = 0\ (x - 6)(x - 1) = 0\ x = 6 vee x = 1[/latex] e) dziedzina x ≠ - 1 [latex]4^{frac{x - 1}{x + 1}} = 1 = 4^0\ frac{x - 1}{x + 1} = 0\ x - 1 = 0\ x = 1[/latex] f) [latex]4^{5x - 8} = 16^{x - 3} = (4^2)^{x - 3} = 4^{2x - 6}\ 5x - 8 = 2x - 6\ 3x = 2\ x = frac{2}{3}[/latex] zadanie 2 a) dziedzina x ≠ 0 [latex]left(frac{2}{3} ight)^{x - 1} * left(frac{3}{2} ight)^{frac{1}{x}} = frac{4}{9}\ left(frac{2}{3} ight)^{x - 1} * left(frac{2}{3} ight)^{- frac{1}{x}} = left(frac{2}{3} ight)^2\ left(frac{2}{3} ight)^{x - 1 - frac{1}{x}} = left(frac{2}{3} ight)^2\ x - 1 - frac{1}{x} = 2\ x^2 - 3x - 1\ Delta = 9 + 4 = 13\ x = frac{3 + sqrt{13}}{2} vee x = frac{3 - sqrt{13}}{2} [/latex] b) [latex]left(frac{2}{5} ight)^{3x - 7} = left(frac{5}{2} ight)^{7x - 2} = left(frac{2}{5} ight)^{- 7x + 2}\ left(frac{2}{5} ight)^{3x - 7} = left(frac{2}{5} ight)^{- 7x + 2}\ 3x - 7 = - 7x + 2\ 10x = 9\ x = 0,9[/latex] c) [latex]2^{x - 5} * 4^{x + 3} = 4\ 2^{x - 5} * (2^2)^{x + 3} = 2^2\ 2^{x - 5 + 2x + 6} = 2^2\ x - 5 + 2x + 6 = 2\ 3x = 1\ x = frac{1}{3}[/latex] d) [latex]left(frac{1}{27}sqrt{3} ight)^x = 27*9^{3 - 2x}\ (3^{-3}*3^{frac{1}{2}})^x = 3^3*(3^2)^{3 - 2x}\ 3^{frac{- 5}{2}x} = 3^{3 + 6 - 4x}\ frac{- 5}{2}x = 3 + 6 - 4x\ 3x = 9*2\ x = 6[/latex] e) [latex]left(frac{1}{125}25^x ight)^x = 5^{3x - 4}\ (5^{-3}*5^{2x})^x = 5^{3x - 4}\ 5^{x(2x - 3)} = 5^{3x - 4}\ 2x^2 - 3x = 3x - 4\ x^2 - 3x + 2 = 0\ (x - 2)(x - 1) = 0\ x = 2 vee x = 1[/latex] f) [latex]3^{x^2 + 2} = 3^{3x}\ x^2 + 2 = 3x\ x^2 - 3x + 2 = 0\ (x - 2)(x - 1) = 0\ x = 2 vee x = 1[/latex] jak masz pytania to pisz na pw
Zadanie 1 i 2 w załączniku http://img266.imageshack.us/f/img0002rc.jpg/
Daje naj
Odpowiedź
Dodaj swoją odpowiedź