1) Rozwiąż; a) x²-5x+4>0 b)x²+5x+6≤0 c)-x²+x+6≥0 2)Zapisz w postaci ogólnej; a)y=-5(x-4)²-6 b)y=2(x+3)²-4 3)Zapisz w postaci kanonicznej a)y=9x²+12x+4 b)y=x²-2x-3

1) Rozwiąż; a) x²-5x+4>0 b)x²+5x+6≤0 c)-x²+x+6≥0 2)Zapisz w postaci ogólnej; a)y=-5(x-4)²-6 b)y=2(x+3)²-4 3)Zapisz w postaci kanonicznej a)y=9x²+12x+4 b)y=x²-2x-3
Odpowiedź

2. a) postać ogólna y = ax²+bx+c y=-5(x-4)²-6 y=-5(x²-8x+16)-6 y=-5x²+40x-80-6 y=-5x²+40x-86 b) y=2(x+3)²-4 y=2(x²+6x+9)-4 y=2x²+12x+18-4 y=2x²+12x+14 3. postać kanoniczna funkcji: y=a(x-p)²+q gdzie p=-b/2a q=-Δ/4a a)y=9x²+12x+4 a=9 Δ=b²-4ac Δ=12²-4×9×4 = 144- 144 = 0 p=-b/2a = -12/2*9 p=-12/9 p=-⅔ q=-Δ/4a = -0/4*9 = 0 y=9(x+⅔)² b) y=x²-2x-3 a=1 Δ=b²-4ac Δ=(-2)²-4*z*(-3) = 4+12 = 16 p= -b/2a p=2/2*1 = 2/2 = 1 p=1 q=-Δ/4a q= -16/4*1 = -16/4=-4 q=-4 y=(x-1)²-4 1. x²-5x+4>0 Δ=b²-4ac Δ=(-5)²-4*1*4=25-16=9 √Δ=3 x₁={-b+√Δ}/2a x₂ = {-b-√Δ}/2a x₁ = {5+3}/2 = 8/2 = 4 x₂ ={5-3}/2 = 2/2 = 1 rysujesz oś liczbową zaznaczasz punkty 1 i 4 (ramiona parabolki do góry) rozwiązaniem jest przedział : x∈(-∞,1)u(4,+∞) b) x²+5x+6 ≤ 0 Δ=b²-4ac Δ=5²-4*1*6=25-24=1 √Δ=1 x₁={-b+√Δ}/2a x₂ = {-b-√Δ}/2a x₁ = {-5+1}/2 = -4/2 = -2 x₂ ={-5-1}/2 = -6/2 = -3 rysujesz oś liczbową zaznaczasz punkty -3 i -2 (ramiona parabolki do góry) rozwiązaniem jest przedział : x∈<-2,3> c) -x²+x+6≥0 Δ=b²-4ac Δ=²-4*(-1)*6=1+24 = 25 √Δ=5 x₁={-b+√Δ}/2a x₂ = {-b-√Δ}/2a x₁ = {-1+5}/2*(-1) = 4/-2 = -2 x₂ ={-1-5}/2*(-1) = -6/-2 = 3 rysujesz oś liczbową zaznaczasz punkty -2 i 3 (ramiona parabolki do dołu bo - przed x²) rozwiązaniem jest przedział : x∈<-2,3>

Dodaj swoją odpowiedź