w załączniku.
a) (√21-√20)(√21+√20)= √21²-√20²= 21-20=1 b) tutaj domyślam się, że też miały być nawiasy bo jeżeli nie to nie można by zastosować żadnego ze wzorów skróconego mnożenia (√13+√2)*(√13-√2)= √13²-√2²= 13-2=11 a) 1/√2=√2/2 b) 2/√3-1= 2(√3+1)/(√3-1)(√3+1)= (2√3+2)/3-1= (2√3+2)/2= √3+1 c) √2/3+√2= √2(3-√2)/(3+√2)(3-√2)= (3√2-2)/(9-2)= (3√2-2)/7= 3√2/7-2/7 d) 7√2/√2-3= 7√2(√2+3)/(√2-3)(√2+3)= (14+21√2)/(2-9)= -(14+21√2)/7= -2-3√2 e) √5+1/√5-1= √5+1(√5+1)/(√5-1)(√5+1)= (5+√5+√5+1)/(5-1)= (2√5+6)/4= √5/2+3/2
a) (√21-√20)(√21+√20) = √21²-√20²= 21-20= 1 b) (√13+√2)*(√13-√2)= √13²-√2²= 13-2=11 a) 1/√2=√2/2 b) 2/√3-1= 2(√3+1)/(√3-1)(√3+1)= (2√3+2)/3-1= (2√3+2)/2= √3+1 c) √2/3+√2= √2(3-√2)/(3+√2)(3-√2)= (3√2-2)/(9-2)= (3√2-2)/7= 3√2/7-2/7 d) 7√2/√2-3= 7√2(√2+3)/(√2-3)(√2+3)= (14+21√2)/(2-9)= -(14+21√2)/7= -2-3√2 e) √5+1/√5-1= √5+1(√5+1)/(√5-1)(√5+1)= (5+√5+√5+1)/(5-1)=(2√5+6)/4= √5/2+3/2