x²dy/dx+y-2=0

x²dy/dx+y-2=0
Odpowiedź

x²dy/dx + (y - 2) = 0 x²dy/dx = - (y - 2) / *dx x²dy = - (y - 2)dx /: x² dy = - (y - 2)dx/x² /: (y - 2) dy/(y - 2) = - dx/x² ∫dy/(y - 2) = ∫dx/x² ln|y - 2| = x⁻¹ y - 2 = e^ x⁻¹ y = e^ x⁻¹ + 2

x²dy/dx + (y-2) = 0 x²dy/dx = - (y-2) / *dx x²dy = - (y-2)dx /: x² dy = - (y-2)dx/x² /: (y-2) dy/(y-2) = - dx/x² ∫dy/(y-2) = ∫dx/x² ln|y - 2| = x-¹ y - 2 = e^ x-¹ y = e^ x-¹ + 2

Dodaj swoją odpowiedź