AB = (1, -5, 2) AC = (4, -5, 3) BC = (3, 0, 1) AB*AC = 4*1+-5*-5+2*3 = 35 |AB| = pierw(30) |AC| = pierw(50) |BC| = pierw(10) pole mozna obliczyc ze wzoru herona P = pierw(p(p-a)(p-b)(p-c)) gdzie p = (a+b+c)/2 p = (pierw(10)+pierw(30)+pierw(50))/2 P = pierw((pierw(10)+pierw(30)+pierw(50))/2*((pierw(10)+pierw(30)+pierw(50))/2-pierw(10))*((pierw(10)+pierw(30)+pierw(50))/2-pierw(30))*((pierw(10)+pierw(30)+pierw(50))/2-pierw(50))) P = 5/2*pierw(11) = 8,29 wiem ze nic z tego nie widac ale ktos chciał zebym poprawił. jesli zajdzie potrzeba rozpisze to na kartce
A = (1,0,3) B = (2, -5,5) C = (5,-5,6) --> AB = [2-1;-5-0;5-3] = [1;-5;2] --> AC = [5 -1; -5 -0;6 - 3] = [ 4;-5; 3] Iloczyn skalarny AB o AC = 1*4 +(-5)*(-5)* + 2*3 = 4 + 25 +6 = 35 ============================================ I AB I ² = 1² +(-5)² +2² = 1 + 25 + 4 = 30 zatem I AB I = √30 I AC I² = 4² +(-5)² + 3² = 16 + 25 +9 = 50 zatem I AC I = √50 Mamy AB o AC = I AB I * I AC I * cos α cos α = [ AB o AC ] : [ I AB i * I AC I ] = 35 : [√30*√50] = = 35 : √1500 = 35 : 10√15 = 7 : 2√15 = (7√15)/30 sin²α + cos²α = 1 sin²α = 1 - [ (7√15)/30]² = 1 - (49*15)/900 = = 1 - 735/900 = 900/900 - 735/900 = 165/900 sinα = √165/√900 = √165 / 30 ============================= PΔ = 0,5 * I ABI * I AC I * sin α = 0,5*√30*√50 *[√165/ 30] = = 0,5*√1500*[√165 / 30] = 0,5*10√15*[√165 / 30] = = 5*√2475 / 30 = 5*√( 25*9*11) /30 = 5*5*3*√11/30 = 2,5*√11 PΔ = 2,5*√11 j² ========================================================