a) an = -13 - 5n - jest to ciag arytmetyczny, bo an+1 = -13 -5(n+1) = -13 - 5n - 5 = -18 - 5n oraz an+1 - an =(-18 - 5n) - (-13 - 5n) = -18 +13 = -5 r = -5 < 0 Jest to ciąg arytmetyczny malejący. bn oraz dn - zapisy nie są czytelne. Nie wiadomo gdzie jest kreska ułamkowa. Trzeba stosowac nawiasy.
Ciąg jest arytmentyczny, gdy różnica jest stała, tzn. np [latex] a_2 - a_1 = a_3 - a_2 [/latex] a) a₁ = -13-5 = -18 a₂= -13-10 = -23 a₃ = -13-15 = -28 a₂-a₁ = -23-(-18) = -23+18 = -5 a₃-a₂ = -28-(-23) = -28+23 = -5 Zatem ciąg jest arytmetyczny. b) b₁ = 4+1 = 5 b₂ = 8+2 = 10 b₃ = 12+3 = 15 b₃-b₂ = 15-10 = 5 b₂-b₁ = 10-5 = 5 Zatem ciąg jest arytmetyczny. c) d₁ = 6+4 = 10 d₂ = 24+24/4 = 24+6 = 30 d₃ = 54+36/5 = 54+7,2 = 61,2 d₃-d₂ = 61,2-30 = 31,2 d₂-d₁ = 30-10 = 20 Zatem ciąg nie jest arytmetyczny.