Dzielimy licznik i mianownik przez najwyzsza potege n z mianownika. [latex]\ lim_{n o infty} frac{ sqrt{9n^2+n} }{ sqrt{8n^3-3n+2} } = \ \lim_{n o infty} frac{ sqrt{ frac{9}{n} + frac{1}{n^2} } }{ sqrt{8- frac{3}{n^2} + frac{2}{n^3} } } = frac{0}{ sqrt{8} } =0 \ \Odp. A.[/latex]
[latex]limlimits_{n o infty}frac{sqrt{9n^2+n}}{sqrt{8n^3-3n+2}}=limlimits_{n o infty}frac{sqrt{n^2(9+frac{1}{n})}}{sqrt{n^2(8n-frac{3}{n}+frac{2}{n^2})}}=\ =limlimits_{n o infty}frac{sqrt{n^2}sqrt{(9+frac{1}{n})}}{sqrt{n^2}sqrt{(8n-frac{3}{n}+frac{2}{n^2})}} =limlimits_{n o infty}frac{nsqrt{(9+frac{1}{n})}}{nsqrt{(8n-frac{3}{n}+frac{2}{n^2})}}=\ =limlimits_{n o infty}frac{sqrt{(9+frac{1}{n})}}{sqrt{(8n-frac{3}{n}+frac{2}{n^2})}}=0[/latex] ponieważ: [latex]limlimits_{n o infty}sqrt{(9+frac{1}{n})}=sqrt{9}=3\ limlimits_{n o infty}sqrt{(8n-frac{3}{n}+frac{2}{n^2})}}=infty[/latex]