Z papierowego krążka o polu 49cm(kwadratowych) wycięto współśrodkowo mniejszy krążek. Powstały w ten sposób pierścień ma pole 13cm(kwadratowych). Jaka jest szerokość pierścienia?

Z papierowego krążka o polu 49cm(kwadratowych) wycięto współśrodkowo mniejszy krążek. Powstały w ten sposób pierścień ma pole 13cm(kwadratowych). Jaka jest szerokość pierścienia?
Odpowiedź

Oznaczenia [latex]r_d-promien duzego krazka\ r_m-promien malego krazka\ r_p-szerokosc pierscienia[/latex] Z pola całego krążka mamy: [latex] picdot r_d^2 = 49\ r_d^2=frac{49}{pi}\ r_d=frac{7}{sqrt{pi}\[/latex] Skoro wycięto mniejszy to jego pole ma wartość: [latex]picdot r_d^2-pi r_m^2=13\ 49-pi r_m^2=13\ pi r_m^2=49-13\ r_m^2=frac{36}{pi}\ r_m=frac{6}{sqrt{pi}[/latex] Szerokość pierscienia: [latex]r_p=r_d-r_m=frac{7}{sqrt{pi}}-frac{6}{sqrt{pi}}=frac{1}{sqrt{pi}}\ r_p=frac{sqrt{pi}}{pi}[/latex]

Dodaj swoją odpowiedź