wyznacz równanie okręgu stycznego do osi Ox, którego środkiem jest punkt S=(3, -4)
wyznacz równanie okręgu stycznego do osi Ox, którego środkiem jest punkt S=(3, -4)
Okrąg jest styczny do osi OX, a więc promień to wartość bezwzględna y środka. Z tego wynika, że r=4 [latex](x-3)^2+(y+4)^2=16[/latex]
Długość promienia to odległość środka okręgu od prostej będącej osią Ox. Łatwo zauważyć, że odległość środka okręgu od osi Ox wynosi 4. (Zwłaszcza po narysowaniu tego w układzie współrzędnych.) Równanie okręgu: (x-3)²+(y+4)²=16
Wyznacz równanie okręgu stycznego do osi Oy, którego środkiem jest punkt S=(3, -5)....
wyznacz równanie okręgu stycznego do osi Ox, którego środkiem jest punkt S=(-2,4)...
1) Wyznacz równanie okręgu o środku S=(3,-5) przechodzącego przez początek układu współrzednych 2)Wyznacz równanie okręgu stycznego do osi OY którego środkiem jest punkt S=(3,-5)...