(4^1/4 + 25^-0,5)*[(5^-1 -(1/2^-1/3)^3/2] = [(2^2)^1/4 + (5^2)^-1/2]*[5^-1 -(2^1/3)^3/2] = (2^1/2 + 5^-1)*(5^-1 - 2^1/2) = (5^-1 + 2^1/2)*(5^-1 - 2^1/2) = (5^-1)^2 -(2^1/2)^2 = (1/5)^2 - 2 = 1/25 - 50/25 = -49/25 = -1 24/25 =======
(4 do potegi ¼ +25⁻⁰⁵)[5⁻¹-(1/2 do potegi -⅓) do potęgi ³/₂= to jest Twoja pierwsza linijka przepisana [ (2²) do potegi ¼+(¹/₂₅) do potegi ½] [ 5⁻¹-(2 do ⅓) do ³/₂]= [2 do ½ +(¹/₂₅) do ½](5⁻¹-2 do ½)= [ 2 do½ +(5⁻²)do½] [5⁻¹-2 do ½]= (5⁻¹+2 do ½)(5⁻¹-2 do ½)= (5⁻¹)²-(2 do ½)²= 5⁻²-2=¹/₂₅-2= - 1²⁴/₂₅
Oblicz: [latex]1 frac{7}{9} + 2frac{3}{10} = [/latex] [latex] 2frac{7}{8} + 3frac{1}{6} = [/latex] [latex]c) frac{8}{9} - frac{2}{5} = [/latex] [latex] frac{7}{8} - frac{4}{5} = [/latex] [latex]4frac{5}{6} - frac{1}{4} = [/latex] [latex]
Oblicz: [latex]1 frac{7}{9} + 2frac{3}{10} = [/latex] [latex] 2frac{7}{8} + 3frac{1}{6} = [/latex] [latex]c) frac{8}{9} - frac{2}{5} = [/latex] [latex] frac{7}{8} - frac{4}{5} = [/latex] [latex]4frac{5}{6} - frac{1}{4} = [/latex] [...