zadanie 1 [latex]d=4sqrt5 \ d=asqrt2 \ asqrt2 = 4sqrt5 \ a=frac{4sqrt5}{sqrt2} = frac{4sqrt{10}}{2} = 2sqrt{10} \ V=a^3\ V=(2sqrt{10})^3 = 8cdot 10sqrt{10} = 80sqrt{10}[/latex] zadanie 2 [latex]h=3\ h=frac{asqrt3}{2} \ frac{asqrt3}{2} = 3\ asqrt3 = 6\ a=frac{6}{sqrt3} = frac{6sqrt3}{3} = 2sqrt3 \ r=frac{1}{2}a \ r=frac{1}{2}cdot 2sqrt3=sqrt3[/latex]
Zadanie 1 a - krawędź sześcianu a√2 = 4√5 |:√2 a = [latex]frac{4sqrt{5}}{sqrt{2}}*frac{sqrt{2}}{sqrt{2}}[/latex] a = [latex]frac{4sqrt{10}}{2}[/latex] a = [latex]2sqrt{10}[/latex] V = [latex](2sqrt{10})^{3} = 2sqrt{10}*2sqrt{10}*2sqrt{10} = 80sqrt{10}[/latex] Zadanie 2 h - wysokość przekroju osiowego stożka h = 2r - 2*promień podstawy stożka [latex]h = frac{asqrt{3}}{2} \ \ 3 = frac{asqrt{3}}{2} |*2 \ 6 = asqrt{3} |:sqrt{3} \ a = frac{6}{sqrt{3}}*frac{sqrt{3}}{sqrt{3}} \ a = frac{6sqrt{3}}{3} \ a = 2sqrt{3}[/latex] 2r = 2√3 |:2 r = √3