t₁ = 15 min s₁ = 900 m = 0,9 km t₂ = 5 min t₃ = 30 min s₂ = 1 km [latex]V_s_r = frac{s_c}{t_c} [/latex] [latex]s_c = s_1 + s_2 s_c = 0,9 km + 1 km = 1,9 km[/latex] [latex]t_c = t_1 + t_2 +t_3 t_c = 15 min + 5 min + 30 min = 50 min = frac{50}{60 } h = frac{5}{6} h[/latex] [latex]V_s_r = frac{1,9 km}{ frac{5}{6} h} = 1,9 * frac{6}{5} = 2,28 frac{km}{h} [/latex] [latex]2,28 frac{km}{h } = 2,28 * frac{1000 m}{3600 s } = 0,63 frac{m}{s} [/latex]
dane: s₁ = 900 m t₁ = 15 min s₂ = 0 m t₂ = 5 min s₃ = 1 km = 1000m t₃ = 30 min szukane: v(śr) = ? Rozwiązanie: [latex]v_{sr} = frac{s_{c}}{t_{c}}\\s_{c} = s_1 + s_2 + s_3 = 900m + 0m + 1000m = 1900 m\t_{c} = t_1+t_2+t_3 = 15min + 5min + 30min = 50 min\\v_{sr} = frac{1900m}{50min} = 38frac{m}{min}\\v_{sr} = 38*frac{0,001km}{frac{1}{60}h}} = 2,28frac{km}{h}[/latex] Odp. Średnia prędkość wynosiła 38 m/min (2,28 km/h).